The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] selected mapping (SLM)(7hit)

1-7hit
  • Partial Scrambling Overlapped Selected Mapping PAPR Reduction for OFDM/OQAM Systems

    Tomoya KAGEYAMA  Osamu MUTA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/24
      Vol:
    E104-B No:3
      Page(s):
    338-347

    Offset quadrature amplitude modulation based orthogonal frequency division multiplexing (OFDM/OQAM) is a promising multi-carrier modulation technique to achieve a low-sidelobe spectrum while maintaining orthogonality among subcarriers. However, a major shortcoming of OFDM/OQAM systems is the high peak-to-average power ratio (PAPR) of the transmit signal. To resolve the high-PAPR issue of traditional OFDM, a self-synchronized-scrambler-based selected-mapping has been investigated, where the transmit sequence is scrambled to reduce PAPR. In this method, the receiver must use a descrambler to recover the original data. However, the descrambling process leads to error propagation, which degrades the bit error rate (BER). As described herein, a partial scrambling overlapped selected mapping (PS-OSLM) scheme is proposed for PAPR reduction of OFDM/OQAM signals, where candidate sequences are generated using partial scrambling of original data. The best candidate, the one that minimizes the peak amplitude within multiple OFDM/OQAM symbols, is selected. In the proposed method, an overlap search algorithm for SLM is applied to reduce the PAPR of OFDM/OQAM signals. Numerical results demonstrate that our PS-OSLM proposal achieves better BER than full-scrambling overlapped SLM (FS-OSLM) in OFDM/OQAM systems while maintaining almost equivalent PAPR reduction capability as FS-OSLM and better PAPR than SLM without overlap search. Additionally, we derive a theoretical lower bound expression for OFDM/OQAM with PS-OSLM, and clarify the effectiveness of the proposed scheme.

  • Enhanced Selected Mapping for Impulsive Noise Blanking in Multi-Carrier Power-Line Communication Systems Open Access

    Tomoya KAGEYAMA  Osamu MUTA  Haris GACANIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2174-2182

    In this paper, we propose an enhanced selected mapping (e-SLM) technique to improve the performance of OFDM-PLC systems under impulsive noise. At the transmitter, the best transmit sequence is selected from among possible candidates so as to minimize the weighted sum of transmit signal peak power and the estimated receive one, where the received signal peak power is estimated at the transmitter using channel state information (CSI). At the receiver, a nonlinear blanking is applied to hold the impulsive noise under a given threshold, where impulsive noise detection accuracy is improved by the proposed e-SLM. We evaluate the probability of false alarms raised by impulsive noise detection and bit error rate (BER) of OFDM-PLC system using the proposed e-SLM. The results show the effectiveness of the proposed method in OFDM-PLC system compared with the conventional blanking technique.

  • An Efficient Selection Method of a Transmitted OFDM Signal Sequence for Various SLM Schemes

    Kee-Hoon KIM  Hyun-Seung JOO  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    703-713

    Many selected mapping (SLM) schemes have been proposed to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal sequences. In this paper, an efficient selection (ES) method of the OFDM signal sequence with minimum PAPR among many alternative OFDM signal sequences is proposed; it supports various SLM schemes. Utilizing the fact that OFDM signal components can be sequentially generated in many SLM schemes, the generation and PAPR observation of the OFDM signal sequence are processed concurrently. While the u-th alternative OFDM signal components are being generated, by applying the proposed ES method, the generation of that alternative OFDM signal components can be interrupted (or stopped) according to the selection criteria of the best OFDM signal sequence in the considered SLM scheme. Such interruption substantially reduces the average computational complexity of SLM schemes without degradation of PAPR reduction performance, which is confirmed by analytical and numerical results. Note that the proposed method is not an isolated SLM scheme but a subsidiary method which can be easily adopted in many SLM schemes in order to further reduce the computational complexity of considered SLM schemes.

  • Analysis of Oversampling Effect on Selected Mapping Scheme Using CORR Metric

    Jun-Young WOO  Kee-Hoon KIM  Kang-Seok LEE  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E99-B No:2
      Page(s):
    364-369

    It is known that in the selected mapping (SLM) scheme for orthogonal frequency division multiplexing (OFDM), correlation (CORR) metric outperforms the peak-to-average power ratio (PAPR) metric in terms of bit error rate (BER) performance. It is also well known that four times oversampling is used for estimating the PAPR performance of continuous OFDM signal. In this paper, the oversampling effect of OFDM signal is analyzed when CORR metric is used for the SLM scheme in the presence of nonlinear high power amplifier. An analysis based on the correlation coefficients of the oversampled OFDM signals shows that CORR metric of two times oversampling in the SLM scheme is good enough to achieve the same BER performance as four times and 16 times oversampling cases. Simulation results confirm that for the SLM scheme using CORR metric, the BER performance for two times oversampling case is almost the same as that for four and 16 times oversampling cases.

  • Low-Complexity SLM and PTS Schemes for PAPR Reduction in OFDM Systems

    Chin-Liang WANG  Yuan OUYANG  Ming-Yen HSU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2420-2425

    One major drawback of orthogonal frequency-division multiplexing is the high peak-to-average power ratio (PAPR) of the output signal. The selected mapping (SLM) and partial transmit sequences (PTS) methods are two promising techniques for PAPR reduction. However, to generate a set of candidate signals, these techniques need a bank of inverse fast Fourier transforms (IFFT's) and thus require high computational complexity. In this paper, we propose two low-complexity multiplication-free conversion processes to replace the IFFT's in the SLM method, where each conversion process for an N-point IFFT involves only 3N complex additions. Using these proposed conversions, we develop several new SLM schemes and a combined SLM & PTS method, in which at least half of the IFFT blocks are reduced. Computer simulation results show that, compared to the conventional methods, these new schemes have approximately the same PAPR reduction performance under the same number of candidate signals for transmission selection.

  • Novel SLM Scheme with Low-Complexity for PAPR Reduction in OFDM System

    Chua-Yun HSU  Hsin-Chieh CHAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:7
      Page(s):
    1689-1696

    Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitted signal. This study introduces a low-complexity selected mapping (SLM) OFDM scheme based on discrete Fourier transform (DFT) constellation-shaping. The DFT-based constellation-shaping algorithm applied with conventional SLM scheme usually requires a bank of DFT-shaping matrices to generate low-correlation constellation sequences and a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this process usually results in high computational complexity. Therefore, a sparse matrix algorithm with low-complexity is proposed to replace the IFFT blocks and the DFT-shaping blocks in the proposed DFT constellation-shaping SLM scheme. By using the proposed sparse matrix, the candidate transmission signal with the lowest PAPR can be achieved with lower complexity than that of the conventional SLM scheme. The complexity analysis of the proposed algorithm shows great an improvement in the reduction of the number of multiplications. Moreover, this new low-complexity technique offers a PAPR that is significantly lower than that of the conventional SLM without any loss in terms of energy and spectral efficiency.

  • Selected Mapping Technique with Magnitude Extension for PAPR Reduction of an OFDM Signal

    Yang Chan CHO  Seung Hee HAN  Jae Hong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    995-998

    High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback of orthogonal frequency division multiplexing (OFDM). Selected mapping (SLM) technique is an efficient PAPR reduction technique for OFDM. In the SLM technique, many data blocks are generated from an OFDM data block using a set of phase sequences, and then the one with the lowest PAPR is chosen and transmitted. In this paper, an SLM technique with magnitude extension is proposed. In the proposed SLM technique, it is not needed to transmit side information from transmitter to receiver. The proposed technique achieves significant reduction in PAPR with only a small increase in transmit signal power.