The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] selective encryption(4hit)

1-4hit
  • Perceptual Encryption Based on Features of Interpolating Curve for Vector Map

    Ngoc-Giao PHAM  Suk-Hwan LEE  Ki-Ryong KWON  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1156-1164

    Nowadays, vector map content is widely used in the areas of life, science and the military. Due to the fact that vector maps bring great value and that their production process is expensive, a large volume of vector map data is attacked, stolen and illegally distributed by pirates. Thus, vector map data must be encrypted before being stored and transmitted in order to ensure the access and to prevent illegal copying. This paper presents a novel perceptual encryption algorithm for ensuring the secured storage and transmission of vector map data. Polyline data of vector maps are extracted to interpolate a spline curve, which is represented by an interpolating vector, the curvature degree coefficients, and control points. The proposed algorithm is based on encrypting the control points of the spline curve in the frequency domain of discrete cosine transform. Control points are transformed and selectively encrypted in the frequency domain of discrete cosine transform. They are then used in an inverse interpolation to generate the encrypted vector map. Experimental results show that the entire vector map is altered after the encryption process, and the proposed algorithm is very effective for a large dataset of vector maps.

  • An Unequal Secure Encryption Scheme for H.264/AVC Video Compression Standard

    Yibo FAN  Jidong WANG  Takeshi IKENAGA  Yukiyasu TSUNOO  Satoshi GOTO  

     
    PAPER-Symmetric Cryptography

      Vol:
    E91-A No:1
      Page(s):
    12-21

    H.264/AVC is the newest video coding standard. There are many new features in it which can be easily used for video encryption. In this paper, we propose a new scheme to do video encryption for H.264/AVC video compression standard. We define Unequal Secure Encryption (USE) as an approach that applies different encryption schemes (with different security strength) to different parts of compressed video data. This USE scheme includes two parts: video data classification and unequal secure video data encryption. Firstly, we classify the video data into two partitions: Important data partition and unimportant data partition. Important data partition has small size with high secure protection, while unimportant data partition has large size with low secure protection. Secondly, we use AES as a block cipher to encrypt the important data partition and use LEX as a stream cipher to encrypt the unimportant data partition. AES is the most widely used symmetric cryptography which can ensure high security. LEX is a new stream cipher which is based on AES and its computational cost is much lower than AES. In this way, our scheme can achieve both high security and low computational cost. Besides the USE scheme, we propose a low cost design of hybrid AES/LEX encryption module. Our experimental results show that the computational cost of the USE scheme is low (about 25% of naive encryption at Level 0 with VEA used). The hardware cost for hybrid AES/LEX module is 4678 Gates and the AES encryption throughput is about 50 Mbps.

  • A Selective Video Encryption Scheme for MPEG Compression Standard

    Gang LIU  Takeshi IKENAGA  Satoshi GOTO  Takaaki BABA  

     
    PAPER-Application

      Vol:
    E89-A No:1
      Page(s):
    194-202

    With the increase of commercial multimedia applications using digital video, the security of video data becomes more and more important. Although several techniques have been proposed in order to protect these video data, they provide limited security or introduce significant overhead. This paper proposes a video security scheme for MPEG video compression standard, which includes two methods: DCEA (DC Coefficient Encryption Algorithm) and "Event Shuffle." DCEA is aim to encrypt group of codewords of DC coefficients. The feature of this method is the usage of data permutation to scatter the ciphertexts of additional codes in DC codewords. These additional codes are encrypted by block cipher previously. With the combination of these algorithms, the method provides enough security for important DC component of MPEG video data. "Event Shuffle" is aim to encrypt the AC coefficients. The prominent feature of this method is a shuffling of AC events generated after DCT transformation and quantization stages. Experimental results show that these methods introduce no bit overhead to MPEG bit stream while achieving low processing overhead to MPEG codec.

  • Dual Level Access Scheme for Digital Video Sequences

    Thumrongrat AMORNRAKSA  Peter SWEENEY  

     
    PAPER-Broadcast Systems

      Vol:
    E88-B No:4
      Page(s):
    1632-1640

    In this paper, a dual level access scheme is proposed to provide two levels of access to the broadcast data; one to video signals protected for authorized users, another to extra information e.g. advertisements provided for the remaining users in the network. In the scheme, video signals in MPEG format are considered. The video contents are protected from unauthorized viewing by encrypting the DC coefficients of the luminance component in I-frames, which are extracted from the MPEG bit-stream. An improved direct sequence spread spectrum technique is used to add extra information to non-zero AC coefficients, extracted from the same MPEG bit-stream. The resultant MPEG bit-stream still occupies the same existing bandwidth allocated for a broadcast channel. At the receiver, the extra information is recovered and subtracted from the altered AC coefficients. The result is then combined with the decrypted DC coefficients to restore the original MPEG bit-stream. The experimental results show that less than 2.9% of the size of MPEG bit-stream was required to be encrypted in order to efficiently reduce its commercial value. Also, on average, with a 1.125 Mbps MPEG bit-stream, an amount of extra information up to 1.4 kbps could be successfully transmitted, while the video quality (PSNR) was unnoticeably degraded by 2.81 dB.