1-9hit |
Naotake KAMIURA Shoji KOBASHI Manabu NII Takayuki YUMOTO Ichiro YAMAMOTO
In this paper, we present a method of analyzing relationships between items in specific health examination data, as one of the basic researches to address increases of lifestyle-related diseases. We use self-organizing maps, and pick up the data from the examination dataset according to the condition specified by some item values. We then focus on twelve items such as hemoglobin A1c (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transpeptidase (γ-GTP), and triglyceride (TG). We generate training data presented to a map by calculating the difference between item values associated with successive two years and normalizing the values of this calculation. We label neurons in the map on condition that one of the item values of training data is employed as a parameter. We finally examine the relationships between items by comparing results of labeling (clusters formed in the map) to each other. From experimental results, we separately reveal the relationships among HbA1c, AST, ALT, γ-GTP and TG in the unfavorable case of HbA1c value increasing and those in the favorable case of HbA1c value decreasing.
Kazuhiro TOKUNAGA Nobuyuki KAWABATA Tetsuo FURUKAWA
We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.
Haruna MATSUSHITA Yoshifumi NISHIO
In the real world, it is not always true that neighboring houses are physically adjacent or close to each other. in other words, "neighbors" are not always "true neighbors." In this study, we propose a new Self-Organizing Map (SOM) algorithm, SOM with False-Neighbor degree between neurons (called FN-SOM). The behavior of FN-SOM is investigated with learning for various input data. We confirm that FN-SOM can obtain a more effective map reflecting the distribution state of input data than the conventional SOM and Growing Grid.
Haruna MATSUSHITA Yoshifumi NISHIO
Since we can accumulate a large amount of data including useless information in recent years, it is important to investigate various extraction method of clusters from data including much noises. The Self-Organizing Map (SOM) has attracted attention for clustering nowadays. In this study, we propose a method of using plural SOMs (TSOM: Tentacled SOM) for effective data extraction. TSOM consists of two kinds of SOM whose features are different, namely, one self-organizes the area where input data are concentrated, and the other self-organizes the whole of the input space. Each SOM of TSOM can catch the information of other SOMs existing in its neighborhood and self-organizes with the competing and accommodating behaviors. We apply TSOM to data extraction from input data including much noise, and can confirm that TSOM successfully extracts only clusters even in the case that we do not know the number of clusters in advance.
Masaru TAKANASHI Hiroyuki TORIKAI Toshimichi SAITO
Collaboration of growing self-organizing maps (GSOM) and adaptive resonance theory maps (ART) is considered through traveling sales-person problems (TSP).The ART is used to parallelize the GSOM: it divides the input space of city positions into subspaces automatically. One GSOM is allocated to each subspace and grows following the input data. After all the GSOMs grow sufficiently they are connected and we obtain a tour. Basic experimental results suggest that we can find semi-optimal solution much faster than serial methods.
Haruna MATSUSHITA Yoshifumi NISHIO
The Self-Organizing Map (SOM) is an unsupervised neural network introduced in the 80's by Teuvo Kohonen. In this paper, we propose a method of simultaneously using two kinds of SOM whose features are different (the nSOM method). Namely, one is distributed in the area at which input data are concentrated, and the other self-organizes the whole of the input space. The competing behavior of the two kinds of SOM for nonuniform input data is investigated. Furthermore, we show its application to clustering and confirm its efficiency by comparing with the k-means method.
Yasuhisa TAKIZAWA Peter DAVIS Makoto KAWAI Hisato IWAI Akira YAMAGUCHI Sadao OBANA
The location information of ubiquitous objects is one of the key issues for context-aware systems. Therefore, several positioning systems to obtain precise location information have been researched. However, they have scalability and flexibility problems because they need completely configured space with a large number of sensors. To avoid the problems, we proposed a self-organizing location estimation method that uses ad hoc networks and Self-Organizing Maps and needs no prepared space with a large number of sensors. But, as in other similar precise localization methods, the proposed method needs advanced distance measurements unavailable to conventional wireless communication systems. In this paper, the self-organizing location estimation method's modification for distance measurement that uses received signal strength available to conventional wireless communication systems but which fluctuates uncertainly, is described and location estimation accuracy with the modified method is shown.
Harald GALDA Hajime MURAO Hisashi TAMAKI Shinzo KITAMURA
Malignant melanoma is a skin cancer that can be mistaken as a harmless mole in the early stages and is curable only in these early stages. Therefore, dermatologists use a microscope that shows the pigment structures of the skin to classify suspicious skin lesions as malignant or benign. This microscope is called "dermoscope." However, even when using a dermoscope a malignant skin lesion can be mistaken as benign or vice versa. Therefore, it seems desirable to analyze dermoscopic images by computer to classify the skin lesion. Before a dermoscopic image can be classified, it should be segmented into regions of the same color. For this purpose, we propose a segmentation method that automatically determines the number of colors by optimizing a cluster validity index. Cluster validity indices can be used to determine how accurately a partition represents the "natural" clusters of a data set. Therefore, cluster validity indices can also be applied to evaluate how accurately a color image is segmented. First the RGB image is transformed into the L*u*v* color space, in which Euclidean vector distances correspond to differences of visible colors. The pixels of the L*u*v* image are used to train a self-organizing map. After completion of the training a genetic algorithm groups the neurons of the self-organizing map into clusters using fuzzy c-means. The genetic algorithm searches for a partition that optimizes a fuzzy cluster validity index. The image is segmented by assigning each pixel of the L*u*v* image to the nearest neighbor among the cluster centers found by the genetic algorithm. A set of dermoscopic images is segmented using the method proposed in this research and the images are classified based on color statistics and textural features. The results indicate that the method proposed in this research is effective for the segmentation of dermoscopic images.
Masaaki KUBO Zaher AGHBARI Kun Seok OH Akifumi MAKINOUCHI
This paper proposes a technique for indexing, clustering and retrieving images based on their edge features. In this technique, images are decomposed into several frequency bands using the Haar wavelet transform. From the one-level decomposition sub-bands an edge image is formed. Next, the higher order auto-correlation function is applied on the edge image to extract the edge features. These higher order autocorrelation features are normalized to generate a compact feature vector, which is invariant to shift, image size. We used direction cosine as measure of distance not to be influenced by difference of each image's luminance. Then, these feature vectors are clustered by a self-organizing map (SOM) based on their edge feature similarity. The performed experiments show higher precision and recall of this technique than traditional ways in clustering and retrieving images in a large image database environment.