The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] semantic relations(3hit)

1-3hit
  • Semantic Relationship-Based Unsupervised Representation Learning of Multivariate Time Series

    Chengyang YE  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/11/16
      Vol:
    E107-D No:2
      Page(s):
    191-200

    Representation learning is a crucial and complex task for multivariate time series data analysis, with a wide range of applications including trend analysis, time series data search, and forecasting. In practice, unsupervised learning is strongly preferred owing to sparse labeling. However, most existing studies focus on the representation of individual subseries without considering relationships between different subseries. In certain scenarios, this may lead to downstream task failures. Here, an unsupervised representation learning model is proposed for multivariate time series that considers the semantic relationship among subseries of time series. Specifically, the covariance calculated by the Gaussian process (GP) is introduced to the self-attention mechanism, capturing relationship features of the subseries. Additionally, a novel unsupervised method is designed to learn the representation of multivariate time series. To address the challenges of variable lengths of input subseries, a temporal pyramid pooling (TPP) method is applied to construct input vectors with equal length. The experimental results show that our model has substantial advantages compared with other representation learning models. We conducted experiments on the proposed algorithm and baseline algorithms in two downstream tasks: classification and retrieval. In classification task, the proposed model demonstrated the best performance on seven of ten datasets, achieving an average accuracy of 76%. In retrieval task, the proposed algorithm achieved the best performance under different datasets and hidden sizes. The result of ablation study also demonstrates significance of semantic relationship in multivariate time series representation learning.

  • AdjScales: Visualizing Differences between Adjectives for Language Learners

    Vera SHEINMAN  Takenobu TOKUNAGA  

     
    PAPER-Educational Technology

      Vol:
    E92-D No:8
      Page(s):
    1542-1550

    In this study we introduce AdjScales, a method for scaling similar adjectives by their strength. It combines existing Web-based computational linguistic techniques in order to automatically differentiate between similar adjectives that describe the same property by strength. Though this kind of information is rarely present in most of the lexical resources and dictionaries, it may be useful for language learners that try to distinguish between similar words. Additionally, learners might gain from a simple visualization of these differences using unidimensional scales. The method is evaluated by comparison with annotation on a subset of adjectives from WordNet by four native English speakers. It is also compared against two non-native speakers of English. The collected annotation is an interesting resource in its own right. This work is a first step toward automatic differentiation of meaning between similar words for language learners. AdjScales can be useful for lexical resource enhancement.

  • A Nonblocking Group Membership Protocol for Large-Scale Distributed Systems

    Mulan ZHU  Kentaro SHIMIZU  

     
    PAPER-Computer Systems

      Vol:
    E83-D No:2
      Page(s):
    177-189

    This paper presents a robust and nonblocking group membership protocol for large-scale distributed systems. This protocol uses the causal relation between membership-updating messages (i. e. , those specifying the adding and deleting of members) and allows the messages to be executed in a nonblocking manner. It differs from conventional group membership protocols in the following points: (1) neither global locking nor global synchronization is required; (2) membership-updating messages can be issued without being synchronized with each other, and they can be executed immediately after their arrival. The proposed protocol therefore is highly scalable, and is more tolerant to node and network failures and to network partitions than are the conventional protocols. This paper proves that the proposed protocol works properly as long as messages can eventually be received by their destinations. This paper also discusses some design issues, such as multicast communication of the regular messages, fault tolerance and application to reliable communication protocols (e. g. , TCP/IP).