1-2hit |
Mohd Zafri BAHARUDDIN Yuta IZUMI Josaphat Tetuko Sri SUMANTYO YOHANDRI
Antenna radiation patterns have side-lobes that add to ambiguity in the form of ghosting and object repetition in SAR images. An L-band 1.27GHz, 2×5 element proximity-coupled corner-truncated patch array antenna synthesized using the Dolph-Chebyshev method to reduce side-lobe levels is proposed. The designed antenna was sim-ulated, optimized, and fabricated for antenna performance parameter measurements. Antenna performance characteristics show good agree-ment with simulated results. A set of antennas were fabricated and then used together with a custom synthetic aperture radar system and SAR imaging performed on a point target in an anechoic chamber. Imaging results are also discussed in this paper showing improvement in image output. The antenna and its connected SAR systems developed in this work are different from most previous work in that this work is utilizing circular polarization as opposed to linear polarization.
Ji-Hoon BAE Kyung-Tae KIM Cheol-Sig PYO
In this paper, we present a noble pattern synthesis method of linear and planar array antennas, with non-uniform spacing, for simultaneous reduction of their side-lobe level and pattern distortion during beam steering. In the case of linear array, the Gauss-Newton method is applied to adjust the positions of elements, providing an optimal linear array in the sense of side-lobe level and pattern distortion. In the case of planar array, the concept of thinned array combined with non-uniformly spaced array is applied to obtain an optimal two dimensional (2-D) planar array structure under some constraints. The optimized non-uniformly spaced linear array is extended to the 2-D planar array structure, and it is used as an initial planar array geometry. Next, we further modify the initial 2-D planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraints, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the proposed method can significantly reduce the pattern distortion as well as the side-lobe level, although the beam direction is scanned.