1-2hit |
Accurate estimation of Software Code Size is important for developing cost-efficient embedded systems. The Code Size affects the amount of system resources needed, like ROM and RAM memory, and processing capacity. In our previous work, we have estimated the Code Size based on CFP (COSMIC Function Points) within 15% accuracy, with the purpose of deciding how much ROM memory to fit into products with high cost pressure. Our manual CFP measurement process would require 2.5 man years to estimate the ROM size required in a typical car. In this paper, we want to investigate how the manual effort involved in estimation of Code Size can be minimized. We define a UML Profile capturing all information needed for estimation of Code Size, and develop a tool for automated estimation of Code Size based on CFP. A case study will show how UML models save manual effort in a realistic case.
Hironori WASHIZAKI Daiki HOSHI Yoshiaki FUKAZAWA
A component connection enables a component to use the functionality of other components directly, without generating adapters or other mechanisms at run-time. In conventional component connection models, the connection between components, particularly third-party components, is very costly for code reuse because the component source code must be modified if the types of requester-side and provider-side are different. This paper proposes a new component model, built upon an existing component architecture, which abandons a component service type and connects components based on a method type collection of the provider and requester components. Our model enables flexible connections owing to relaxed component matching, in which the system that implements our model automatically converts values of parameters, return values, and exceptions between required methods and provided ones within a well-defined range. As a result of experimental evaluations, it is found that our model is superior to conventional models in terms of the component-use cost and the capability of changing connections.