The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] software effort estimation(1hit)

1-1hit
  • Software Development Effort Estimation from Unstructured Software Project Description by Sequence Models

    Tachanun KANGWANTRAKOOL  Kobkrit VIRIYAYUDHAKORN  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    739-747

    Most existing methods of effort estimations in software development are manual, labor-intensive and subjective, resulting in overestimation with bidding fail, and underestimation with money loss. This paper investigates effectiveness of sequence models on estimating development effort, in the form of man-months, from software project data. Four architectures; (1) Average word-vector with Multi-layer Perceptron (MLP), (2) Average word-vector with Support Vector Regression (SVR), (3) Gated Recurrent Unit (GRU) sequence model, and (4) Long short-term memory (LSTM) sequence model are compared in terms of man-months difference. The approach is evaluated using two datasets; ISEM (1,573 English software project descriptions) and ISBSG (9,100 software projects data), where the former is a raw text and the latter is a structured data table explained the characteristic of a software project. The LSTM sequence model achieves the lowest and the second lowest mean absolute errors, which are 0.705 and 14.077 man-months for ISEM and ISBSG datasets respectively. The MLP model achieves the lowest mean absolute errors which is 14.069 for ISBSG datasets.