The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] spare capacity(2hit)

1-2hit
  • Pool-Capacity Design Scheme for Efficient Utilizing of Spare Capacity in Self-Healing Networks

    Komwut WIPUSITWARAKUN  Hideki TODE  Hiromasa IKEDA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E82-B No:4
      Page(s):
    618-626

    The self-healing capability against network failure is one of indispensable features for the B-ISDN infrastructure. One problem in realizing such self-healing backbone network is the inefficient utilization of the large spare capacity designed for the failure-restoration purpose since it will be used only in the failure time that does not occur frequently. "Pool-capacity" is the concept that allows some VPs (virtual paths) to efficiently utilize this spare capacity part. Although the total capacity can be saved by using the "Pool Capacity," it is paid by less reliability of VPs caused by the emerging influence of indirect-failure. Thus, this influence of indirect-failure has to be considered in the capacity designing process so that network-designers can trade off the saving of capacity with the reliability level of VPs in their self-healing networks. In this paper, Damage Rate:DR which is the index to indicate the level of the influence caused by indirect-failure is defined and the pool-capacity design scheme with DR consideration is proposed. By the proposed scheme, the self-healing network with different cost (pool-capacity) can be designed according to the reliability level of VPs.

  • Dynamic Adaptable Bandwidth Allocation with Spare Capacity in ATM Networks

    Jacob THOMAS  Les BERRY  

     
    PAPER-Capacity Management

      Vol:
    E81-B No:5
      Page(s):
    877-886

    Bursts from a number of variable bit rate sources allocated to a virtual path with a given capacity can inundate the channel. Buffers used to take care of such bursts can fill up rapidly. The buffer size limits its burst handling capability. With large bursts or a number of consecutive bursts, the buffers fill up and this leads to high cell losses. Channel reconfiguration with dynamic allocation of spare capacities is one of the methods used to alleviate such cell losses. In reconfigurable networks, spare capacity allocation can increase the channel rates for short durations, to cope with the excess loads from the bursts. The dynamic capacity allocations are adaptable to the loads and have fast response times. We propose heuristic rules for spare capacity assignments in ATM networks. By monitoring buffer occupancy, triggers which anticipate excess traffic can be used to assign spare capacities to reduce the cell loss probabilities in the network.