1-4hit |
Shiqing QIAN Wenping GE Yongxing ZHANG Pengju ZHANG
Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.
Xuewan ZHANG Wenping GE Xiong WU Wenli DAI
Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.
Xian-Hua HAN Yen-Wei CHEN Zensho NAKAO
We propose a robust edge detection method based on independent component analysis (ICA). It is known that most of the basis functions extracted from natural images by ICA are sparse and similar to localized and oriented receptive fields, and in the proposed edge detection method, a target image is first transformed by ICA basis functions and then the edges are detected or reconstructed with sparse components only. Furthermore, by applying a shrinkage algorithm to filter out the components of noise in the ICA domain, we can readily obtain the sparse components of the original image, resulting in a kind of robust edge detection even for a noisy image with a very low SN ratio. The efficiency of the proposed method is demonstrated by experiments with some natural images.
Akitoshi KATAOKA Sachiko KURIHARA Shinji HAYASHI Takehiro MORIYA
A trained sparse conjugate codebook is proposed for improving the speech quality of CELP-based coding in a noisy environment. Although CELP coding provides high quality at a low bit rate in a silent environment (creating clean speech), it cannot provide a satisfactory quality in a noisy environment because the conventional fixed codebook is designed to be suitable for clean speech. The proposed codebook consists of two sub-codebooks; each sub-codebook consists of a random component and a trained component. Each component has excitation vectors consisting of a few pulses. In the random component, pulse position and amplitude are determined randomly. Since the radom component does not depend on the speech characteristics, it handles noise better than the trained one. The trained component maintains high quality for clean speech. Since excitation vector is the sum of the two sub-excitation vectors, this codebook handles various speech conditions by selecting a sub-vector from each component. This codebook also reduces the computational complexity of a fixed codebook search and memory requirements compared with the conventional codebook. Subjective testing (absolute category rating (ACR) and degradation category rating (DCR)) indicated that this codebook improves speech quality compared with the conventional trained codebook for noisy speech. The ACR test showed that the quality of the 8 kbit/s CELP coder with this codebook is equivalent to that of the 32 kbit/s ADPCM for clean speech.