The search functionality is under construction.

Keyword Search Result

[Keyword] spatial filter(9hit)

1-9hit
  • A Novel Speech Enhancement System Based on the Coherence-Based Algorithm and the Differential Beamforming

    Lei WANG  Jie ZHU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3253-3257

    This letter proposes a novel speech enhancement system based on the ‘L’ shaped triple-microphone. The modified coherence-based algorithm and the first-order differential beamforming are combined to filter the spatial distributed noise. The experimental results reveal that the proposed algorithm achieves significant performance in spatial filtering under different noise scenarios.

  • MAP Receiver with Spatial Filters for Suppressing Cochannel Interference in MIMO-OFDM Mobile Communications

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1841-1851

    This paper proposes joint maximum a posteriori (MAP) detection and spatial filtering for MIMO-OFDM mobile communications; it offers excellent receiver performance even over interference-limited channels. The proposed joint processor consists of a log likelihood generator and a MAP equalizer. The log likelihood generator suppresses cochannel interference by spatially filtering received signals and provides branch metrics of transmitted signal candidates. Using the branch metrics, the MAP equalizer generates log likelihood ratios of coded bits and performs channel decoding based on the MAP criterion. In the first stage, the log likelihood generator performs spatio-temporal filtering (STF) of the received signals prior to the fast Fourier transform (FFT) and is referred to as preFFT-type STF. Estimation of parameters including tap coefficients of the spatio-temporal filters and equivalent channel impulse responses of desired signals is based on the eigenvalue decomposition of an autocorrelation matrix of both the received and transmitted signals. For further improvement, in the second stage, the generator performs spatial filtering (SF) of the FFT output and is referred to as postFFT-type SF. Estimation of both tap coefficients of the spatial filters and channel impulse responses employs the recursive least squares (RLS) with smoothing. The reason for switching from preFFT-type STF into postFFT-type SF is that preFFT-type STF outperforms postFFT-type SF with a limited number of preamble symbols while postFFT-type SF outperforms preFFT-type STF when data symbols can be reliably detected and used for the parameter estimation. Note that there are two major differences between the proposed and conventional schemes: one is that the proposed scheme performs the two-stage processing of preFFT-type STF and postFFT-type SF, while the other is that the smoothing algorithm is applied to the parameter estimation of the proposed scheme. Computer simulations demonstrate that the proposed scheme can achieve excellent PER performance under interference-limited channel conditions and that it can outperform the conventional joint processing of preFFT-type STF and the MAP equalizer.

  • Suppression of Undesired Reflection Using a Spatial Filtering on Bistatic Radar Cross Section Measurements within a Near Zone

    Hiroyoshi YAMAZAKI  Kohji KOSHIJI  

     
    LETTER-Sensing

      Vol:
    E91-B No:6
      Page(s):
    2077-2080

    Spatial filtering is a useful method to suppress undesired reflection from unwanted scatters in Radar Cross Section (RCS) measurements. Actually, it is difficult to prepare an ideal field which satisfies the far-field criterion for RCS measurements of large targets. We applied the filtering method to a bistatic RCS measurement in a near field and investigated the validity of that method by varying the scanning angular span. Electromagnetic simulations show that predicted RCS profiles from near-field data with unwanted scatters closely matched far-field reference data of the test target. In conclusion, the results show that the method is effective for bistatic RCS measurements in practical field enviroments.

  • Measurement-Based Performance Evaluation of Coded MIMO-OFDM Spatial Multiplexing with MMSE Spatial Filtering in an Indoor Line-of-Sight Environment

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1648-1652

    The MIMO system can meet the growing demand for higher capacity in wireless communication fields. So far, the authors have reported that, based on channel measurements, uncoded performance of narrowband MIMO spatial multiplexing in indoor line-of-sight (LOS) environments generally outperforms that in non-LOS (NLOS) ones under the same transmit power condition. In space-frequency coded MIMO-OFDM spatial multiplexing, however, we cannot expect high space-frequency diversity gain in LOS environments because of high fading correlations and low frequency selectivity of channels so that the performance may degrade unlike uncoded cases. In this letter, we present the practical performance of coded MIMO-OFDM spatial multiplexing based on indoor channel measurements. The results show that an LOS environment tends to provide lower space-frequency diversity effect whereas the MIMO-OFDM spatial multiplexing performance is still better in the environment compared with an NLOS environment.

  • MEG Analysis with Spatial Filtered Reconstruction

    Shinpei OKAWA  Satoshi HONDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:5
      Page(s):
    1428-1436

    Magnetoencephalography (MEG) is a method to measure a magnetic field generated by electrical neural activity in a brain, and it plays increasingly important role in clinical diagnoses and neurophysiological studies. However, in MEG analysis, the estimation of the brain activity, of the electric current density distribution in a brain which is represented by current dipoles, is problematic. A spatial filter and subsequent reconstruction of the current density distribution estimated by the spatial filter (spatial filtered reconstruction: SFR) are proposed. The spatial filter is designed to be used without prior or temporal information. The proposed spatial filter ensures that it concentrates the current distribution around the activated sources in the conductor. The current distribution estimated by the spatial filter is reconstructed by multiple linear regression. Redundant current dipoles are eliminated, and the current distribution is optimized in the sense of the Mallows Cp statistic. Numerical studies are demonstrated and show successful estimation by SFR in multiple-dipole cases. In single-dipole cases with SNRs of 101 and more, the location of the true dipole was successfully estimated for about 80% of the simulations. The reconstruction with multiple linear regression corrected the location of the maximum current density estimated by the proposed spatial filtering. The dipole on the correct position contributes to more than 70% of the total dipoles in the estimated current distribution in those cases. These results show that the current distribution is effectively localized by SFR. We also investigate the differences among SFR, the LCMV (linearly constrained minimum variance) beamformer and the SAM (synthetic aperture magnetometry), the representatives of spatial filters in MEG analyses. It is indicated that spatial resolution is improved by avoiding dependence on temporal information.

  • Performance Analysis of Optical Frequency-Domain Encoding CDMA Enhancement of Frequency Division Multiplexing

    Katsuhiro KAMAKURA  Yoshinobu GAMACHI  Hideyuki UEHARA  Tomoaki OHTSUKI  Iwao SASASE  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:9
      Page(s):
    1749-1757

    Optical frequency division multiplexing (FDM) technique has the advantage of fully orthogonal transmissions. However, FDM system permits only a small number of FDM channels despite of a great effort, such as frequency stabilization. On the other hand, frequency-domain encoding code-division multiple-access (FE-CDMA) has been widely studied as a type of optical CDMA. In this system, encoding is done in the frequency domain of an ultrashort light pulse spread by optically Fourier transform. However, FE-CDMA accommodates very limited number of simultaneous users, though this scheme uses a vast optical bandwidth. It is attractive to consider the combination of both advantages of FDM and FE-CDMA. We propose FE-CDMA enhancement of FDM (FDM/FE-CDMA). Since in FDM/FE-CDMA the total bandwidth is partitioned into M optical bands and each band is encoded by the code with code length of Nc, we expect nearly perfect orthogonal transmissions. In addition, since the creation of FDM bands is realized by a passive filter, the optical frequency is precisely controlled and the optical frequency allocation is flexible. We derive the bit error rate (BER) as a function of the number of simultaneous users, bit rate, and the utilization efficiency of total bandwidth. We compare the performance of FDM/FE-CDMA with that of the conventional FE-CDMA in terms of the number of simultaneous users on condition that each chip width is constant. As a result, we show that FDM/FE-CDMA can support the larger number of simultaneous users than the conventional FE-CDMA at a given bit error rate under the same total bandwidth.

  • Extraction of Glossiness Using Spatial Filter with Variable Resolution

    Seiichi SERIKAWA  Teruo SHIMOMURA  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:4
      Page(s):
    500-502

    A new gloss-extracting method is proposed in this study. A spatial filter with variable resolution is used for the extraction of glossiness. Various spheres and cylinders with curvature radii from 4 to mm are used as the specimens. In all samples, a strong correlation, with a correlation coefficient of more than 0.98, has been observed between psychological glossiness Gph perceived by the human eye and glossiness Gfm extracted by this method. This method is useful for plane specimens as well as spherical and cylindrical ones.

  • Extraction of Glossiness of Curved Surfaces by the Use of Spatial Filter Simulating Retina Function

    Seiichi SERIKAWA  Teruo SHIMOMURA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:3
      Page(s):
    335-342

    Although the perception of gloss is based on human visual perception, some methods for extracting glossiness, in contrast to human ability, have been proposed involving curved surfaces. Glossiness defined in these methods, however, does not correspond with psychological glossiness perceived by the human eye over the wide range from relatively low gloss to high gloss. In addition, the obtained glossiness in these methods changes remarkably when the curvature radius of the high-gloss object becomes larger than 10mm. In reality, psychological glossiness does not change. These methods, furthermore, are available only for spherical objects. A new method for extracting glossiness is proposed in this study. For the new definition of glossiness, a spatial filter which simulates human retina function is utilized. The light intensity distribution of the curved object is convoluted with the spatial filter. The maximum value Hmax of the convoluted distribution has a high correlation with psychological glossiness Gph. From the relationship between Gph and Hmax, new glossiness Gf is defined. The gloss-extraction equipment consists of a light source, TV camera, an image processor and a personal computer. Cylinders with the curvature radii of 3-30 mm are used as the specimens in addition to spherical balls. In all specimens, a strong correlation, with a correlation coefficient of more than 0.97, has been observed between Gf and Gph over a wide range. New glossiness Gf conforms to Gph even if the curvature radius in more than 10 mm. Based on these findings, it is found that this method for extracting glossiness is useful for the extraction of glossiness of spherical and cylindrical objects over a wide range from relatively low gloss to high gloss.

  • An Effective Lowpass Temporal Filter Using Motion Adaptive Spatial Filtering

    Jong-Hum KIM  Soon-Hwa JANG  Seong-Dae KIM  

     
    LETTER-Digital Image Processing

      Vol:
    E75-A No:2
      Page(s):
    261-264

    Unlike a noise removal recursive or averaging filter, this letter presents a temporal filter which attenuates temporal high frequency components and improves visual effects. Although temporal aliasing occurs, the proposed filter proceeds temporal bandlimitation not affected by them. To reduce effects caused by aliasing components, a spatial filtering which is applied along the trajectory of motion is investigated. The proposed filter presents a de-aliasing and effective bandlimiting characteristics as well as reducing of noises.