1-4hit |
Although a large number of query processing algorithms in spatial network database (SNDB) have been studied, there exists little research on route-based queries. Since moving objects move only in spatial networks, route-based queries, like in-route nearest neighbor (IRNN), are essential for Location-based Service (LBS) and Telematics applications. However, the existing IRNN query processing algorithm has a problem in that it does not consider time and space constraints. Therefore, we, in this paper, propose IRNN query processing algorithms which take both time and space constraints into consideration. Finally, we show the effectiveness of our IRNN query processing algorithms considering time and space constraints by comparing them with the existing IRNN algorithm.
Even though it is very important to retrieve similar trajectories with a given query trajectory, there has been a little research on trajectory retrieval in spatial networks, like road networks. In this paper, we propose an efficient indexing scheme for retrieving moving object trajectories in spatial networks. For this, we design a signature-based indexing scheme for efficiently dealing with the trajectories of current moving objects as well as for maintaining those of past moving objects. In addition, we provide an insertion algorithm for storing the segment information of a moving object trajectory as well as a retrieval algorithm to find a set of moving objects whose trajectories match the segments of a query trajectory. Finally, we show that our signature-based indexing scheme achieves at least twice better performance on trajectory retrieval than the leading trajectory indexing schemes, such as TB-tree, FNR-tree, and MON-tree.
Masato KAWABATA Norinobu YOSHIDA
In the spatial network method (SNM) for the vector potential, both the current continuity law including polarization vector and the conservation law of generalized momentum including vector potential field can introduce simpler expressions for dispersive property than that by the electromagnetic field variables. But for the anisotropic medium conditions, the conventional expanded node expression has some difficulties in treating the coupling mechanism among field variables. On the other hand, in the condensed node expression, in which all field components exist at each node, every connections among field components can be simply formulated. In this paper, after proposing the condensed node spatial network method for the vector potential, the advantage of the method such as performing the simplified formulation by utilization of both the vector potential and the condensed node expressions is presented for the magnetized plasma which has the gyro-anisotropy. The validity of the computation is shown by some examples such as Faraday rotation.
This paper describes the method of applying the integral form of Maxwell's equations to the transmission-line network used in the spatial network method for the modeling of curved conductor surfaces. The techniques of dealing with the transmission-line network near cylindrical conductor surface are explained in detail. To compare exact solutions with computed values, a cylindrical cavity resonator is analysed. The resonant frequencies and unloaded Q's for the computed three modes are obtained with the error of about 1%. Moreover, applying this treatment to the waveguide with magnetron anodeshape cross section, a cutoff-constant is computed successfully. It is found that the treatment proposed in this paper can be used as the method for modeling of curved conductor surface in the spatial network method. It is also considered that this treatment can be extend to TLM method.