The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sub-band processing(2hit)

1-2hit
  • Realization of Acoustic Inverse Filtering through Multi-Microphone Sub-Band Processing

    Hong WANG  Fumitada ITAKURA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1474-1483

    The realization of acoustic inverse filter is often difficult because of the non-minimum phase property and the long time duration of the impulse response of the acoustic enclosure. However, if the signals are divided into a large number of sub-bands, many of the sub-bands are found to be invertible. The invertibility of a sub-band signal depends on the zero distribution of the transfer function in the z-plane. In a multi-microphone system, the transfer functions between the sound source and the mirophones have different zero distributions. The method proposed here, taking advantage of the differences of zero distributions, selects the best invertible microphone in each sub-band, and reconstructs the full band signal by summing up the inverse filtered sub-band signals of the best microphones. The quality of the dereverberated signal using the proposed inverse filtering approach is improved with increasing number of microphones and sub-bands. When seven microphones are used and the number of sub-bands is 513, the quality of the dereverberated speech signals are almost the same with the original ones even when the revergeration time is about one second. The introduction of multi-microphones in addition to sub-band processing provides a new way of dealing with the non-minimum phase problem in deconvolution.

  • An Acoustic Echo Canceller with Sub-Band Noise Cancelling

    Hiroshi YASUKAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1516-1523

    An acoustic echo canceller that also cancels room noise is proposed. This system has an additive (noise reference) input port, and a noise canceller (NC) precedes the echo canceller (EC) in a cascade configuration. The adaptation control problem for the cascaded echo and noise canceller is solved by controlling the adaptation process to match the occurrence of intermittent speech/echo; the room noise is a stationary signal. A simulation shows that adaptation using the NLMS algorithm is very effective for the echo and noise cancellation. Sub-band cancelling techniques are utilized. Noise cancellation is realized with a lower band EC. Hardware is implemented and its performance evaluated through experiments under a real acoustic field. The combination of the EC with NC maintains excellent performance at all echo to room noise power ratios. It is shown that the proposed canceller overcomes the disadvantages traditionally associated with ECs and NSc.