1-6hit |
Tsunehiro YOSHINAGA Makoto SAKAMOTO
This paper investigates the closure properties of multi-inkdot nondeterministic Turing machines with sublogarithmic space. We show that the class of sets accepted by the Turing machines is not closed under concatenation with regular set, Kleene closure, length-preserving homomorphism, and intersection.
Tsunehiro YOSHINAGA Jianliang XU Makoto SAKAMOTO
This paper investigates the closure properties of 1-inkdot nondeterministic Turing machines and 1-inkdot alternating Turing machines with only universal states which have sublogarithmic space. We show for example that the classes of sets accepted by these Turing machines are not closed under length-preserving homomorphism, concatenation with regular set, Kleene closure, and complementation.
Tsunehiro YOSHINAGA Jianliang XU Katsushi INOUE
This paper investigates the accepting powers of two-way alternating Turing machines (2ATM's) with only existential (universal) states which have inkdots and sublogarithmic space. It is shown that for sublogarithmic space-bounded computations, (i) multi-inkdot 2ATM's with only existential states and the ones with only universal states are incomparable, (ii) k-inkdot 2ATM's are better than k-inkdot 2ATM's with only existential (universal) states, k ≥ 0, and (iii) the class of sets accepted by multi-inkdot 2ATM's with only existential (universal) states is not closed under complementation.
Tsunehiro YOSHINAGA Katsushi INOUE
This paper investigates a hierarchical property based on the number of inkdots in the accepting powers of sublogarithmic space-bounded multi-inkdot two-way alternating Turing machines with only universal states. For each k1 and any function L(n), let strong-2UTMk(L(n)) (weak-2UTMk(L(n))) be the class of sets accepted by strongly (weakly) L(n) space-bounded k-inkdot two-way alternating Turing machines with only universal states. We show that for each k1, strong-2UTMk+1(log log n) - weak-2UTMk(o(log n)) Ø.
Jianliang XU Katsushi INOUE Yue WANG Akira ITO
This paper investigates the accepting powers of multi-inkdot two-way alternating pushdown automata (Turing machines) with sublogarithmic space and constant leaf-size. For each k1, and each m0, let weak-ASPACEm [L(n),k] denote the class of languages accepted by simultaneously weakly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating Turing machines, and let strong-2APDAm[L(n),k] denote the class of languages accepted by simultaneously strongly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating pushdown automata. We show that(1) strong-2APDAm [log log n,k+1]weak-ASPACEm[o(log n),k]φfor each k1 and each m1, and(2) strong-2APDA(m+1) [log log n,k]weak-ASPACEm[o(log n),k]φfor each k1 and each m0.
Jianliang XU Katsushi INOUE Yue WANG Akira ITO
This paper investigates some fundamental properties of alternating one-way (or two-way) pushdown automata (pda's) with sublogarithmic space. We first show that strongly (weakly) sublogarithmic space-bounded two-way alternating pda's are more powerful than one-way alternating pda's with the same space-bound. Then, we show that weakly sublogarithmic space-bounded two-way (one-way) alternating pda's are more powerful than two-way (one-way) nondeterministic pda's and alternating pda's with only universal states using the same space, and we also show that weakly sublogarithmic space-bounded one-way nondeterministic Turing machines are incomparable with one-way alternating Turing machines with only universal states using the same space. Furthermore, we investigate several fundamental closure properties, and show that the class of languages accepted by weakly sublogarithmic space-bounded one-way alternating pda's and the class of languages accepted by sublogarithmic space-bounded two-way deterministic pda's (nondeterministic pda's, alternating pda's with only universal states) are not closed under concatenation, Kleene closure, and length preserving homomorphism. Finally, we briefly investigate a relationship between 'strongly' and 'weakly'.