The search functionality is under construction.

Keyword Search Result

[Keyword] supervised machine learning(4hit)

1-4hit
  • On the Detection of Malicious Behaviors against Introspection Using Hardware Architectural Events

    Huaizhe ZHOU  Haihe BA  Yongjun WANG  Tie HONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/10/09
      Vol:
    E103-D No:1
      Page(s):
    177-180

    The arms race between offense and defense in the cloud impels the innovation of techniques for monitoring attacks and unauthorized activities. The promising technique of virtual machine introspection (VMI) becomes prevalent for its tamper-resistant capability. However, some elaborate exploitations are capable of invalidating VMI-based tools by breaking the assumption of a trusted guest kernel. To achieve a more reliable and robust introspection, we introduce a practical approach to monitor and detect attacks that attempt to subvert VMI in this paper. Our approach combines supervised machine learning and hardware architectural events to identify those malicious behaviors which are targeted at VMI techniques. To demonstrate the feasibility, we implement a prototype named HyperMon on the Xen hypervisor. The results of our evaluation show the effectiveness of HyperMon in detecting malicious behaviors with an average accuracy of 90.51% (AUC).

  • Construction of Latent Descriptor Space and Inference Model of Hand-Object Interactions

    Tadashi MATSUO  Nobutaka SHIMADA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/13
      Vol:
    E100-D No:6
      Page(s):
    1350-1359

    Appearance-based generic object recognition is a challenging problem because all possible appearances of objects cannot be registered, especially as new objects are produced every day. Function of objects, however, has a comparatively small number of prototypes. Therefore, function-based classification of new objects could be a valuable tool for generic object recognition. Object functions are closely related to hand-object interactions during handling of a functional object; i.e., how the hand approaches the object, which parts of the object and contact the hand, and the shape of the hand during interaction. Hand-object interactions are helpful for modeling object functions. However, it is difficult to assign discrete labels to interactions because an object shape and grasping hand-postures intrinsically have continuous variations. To describe these interactions, we propose the interaction descriptor space which is acquired from unlabeled appearances of human hand-object interactions. By using interaction descriptors, we can numerically describe the relation between an object's appearance and its possible interaction with the hand. The model infers the quantitative state of the interaction from the object image alone. It also identifies the parts of objects designed for hand interactions such as grips and handles. We demonstrate that the proposed method can unsupervisedly generate interaction descriptors that make clusters corresponding to interaction types. And also we demonstrate that the model can infer possible hand-object interactions.

  • Malware Function Estimation Using API in Initial Behavior

    Naoto KAWAGUCHI  Kazumasa OMOTE  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    167-175

    Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we give priority to analyze malware. However, estimating the malware functions has been difficult due to the increasing sophistication of malware. Actually, the previous researches do not estimate the functions of malware sufficiently. In this paper, we propose a new method which estimates the functions of unknown malware from APIs or categories observed by dynamic analysis on a host. We examine whether the proposed method can correctly estimate the malware functions by the supervised machine learning techniques. The results show that our new method can estimate the malware functions with the average accuracy of 83.4% using API information.

  • A Comparative Study of Unsupervised Anomaly Detection Techniques Using Honeypot Data

    Jungsuk SONG  Hiroki TAKAKURA  Yasuo OKABE  Daisuke INOUE  Masashi ETO  Koji NAKAO  

     
    PAPER-Information Network

      Vol:
    E93-D No:9
      Page(s):
    2544-2554

    Intrusion Detection Systems (IDS) have been received considerable attention among the network security researchers as one of the most promising countermeasures to defend our crucial computer systems or networks against attackers on the Internet. Over the past few years, many machine learning techniques have been applied to IDSs so as to improve their performance and to construct them with low cost and effort. Especially, unsupervised anomaly detection techniques have a significant advantage in their capability to identify unforeseen attacks, i.e., 0-day attacks, and to build intrusion detection models without any labeled (i.e., pre-classified) training data in an automated manner. In this paper, we conduct a set of experiments to evaluate and analyze performance of the major unsupervised anomaly detection techniques using real traffic data which are obtained at our honeypots deployed inside and outside of the campus network of Kyoto University, and using various evaluation criteria, i.e., performance evaluation by similarity measurements and the size of training data, overall performance, detection ability for unknown attacks, and time complexity. Our experimental results give some practical and useful guidelines to IDS researchers and operators, so that they can acquire insight to apply these techniques to the area of intrusion detection, and devise more effective intrusion detection models.