The search functionality is under construction.

Keyword Search Result

[Keyword] tapered slot antenna(5hit)

1-5hit
  • Development of Complex-Valued Self-Organizing-Map Landmine Visualization System Equipped with Moving One-Dimensional Array Antenna

    Erika KOYAMA  Akira HIROSE  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    35-38

    This paper reports the development of a landmine visualization system based on complex-valued self-organizing map (CSOM) by employing one-dimensional (1-D) array of taper-walled tapered slot antennas (TSAs). Previously we constructed a high-density two-dimensional array system to observe and classify complex-amplitude texture of scattered wave. The system has superiority in its adaptive distinction ability between landmines and other clutters. However, it used so many (144) antenna elements with many mechanical radio-frequency (RF) switches and cables that it has difficulty in its maintenance and also requires long measurement time. The 1-D array system proposed here uses only 12 antennas and adopts electronic RF switches, resulting in easy maintenance and 1/4 measurement time. Though we observe stripe noise specific to this 1-D system, we succeed in visualization with effective solutions.

  • New Estimation Method for the Operational Low Frequency End of Antipodal Vivaldi Antennas

    Hien Ba CHU  Hiroshi SHIRAI  Chien Dao NGOC  

     
    PAPER-Electromagnetic Theory

      Vol:
    E99-C No:8
      Page(s):
    947-955

    A simple approach is presented for designing an antipodal Vivaldi antenna in this paper. A new and better estimation of the low frequency end of the operational range is shown. Final dimensions of the antenna parameters are determined by using the High Frequency Structure Simulator (HFSS). The proposed antenna has a simple configuration but exhibits low return loss, good radiation characteristics, and high and flat gain in the operating ultra wideband frequency range (3.1-10.6 GHz). Lastly, the fabrication has been done along with the specification to confirm the properties by measurements.

  • High Gain Antipodal Fermi Antenna with Low Cross Polarization

    Hiroyasu SATO  Yukiko TAKAGI  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:8
      Page(s):
    2292-2297

    Antipodal Fermi antenna (APFA) that uses an antipodal feeding section is proposed and its fundamental characteristics are presented. It is shown that the cross polarization level is decreased by 5–10 dB by the presence of the corrugation. It is also found that high gain, low VSWR and low side lobes and low back lobes are obtained. The mechanism of operation principles is discussed by using FDTD analysis. It is found that the corrugation transforms the current of parallel line mode to the current of traveling wave radiation mode and the effective aperture is enlarged which yields high gain characteristics.

  • Linearly Tapered Slot Antenna with Defected Sides for Gain Improvement

    Seongmin PYO  Dae-Myoung IN  In-Chul SHIN  Young-Sik KIM  

     
    LETTER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2655-2657

    A new linearly tapered slot antenna (LTSA) with defected sides is proposed in this letter. Both sides are defected with half-dumbbell shape slots that may alter the surface current intensities on both sides. As the half-dumbbell size is increased, the 3-dB beamwidth of the proposed antenna is 4° and 6° lower in the E/H-plane, respectively, than these of the LTSA without defects. Accordingly, the measured gain is improved by up to 3.75 dB and the first side lobe level is lowered by about -10.8 dB and -5.8 dB in the E/H-planes, respectively.

  • Ultra-Wideband Tapered Slot Antenna Arrays with Parallel-Plate Waveguides

    Satoshi YAMAGUCHI  Hiroaki MIYASHITA  Toru TAKAHASHI  Masataka OTSUKA  Yoshihiko KONISHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:5
      Page(s):
    1248-1255

    Owing to their ultra-wideband characteristics, tapered slot antennas (TSAs) are used as element antennas in wideband phased arrays. However, when the size of a TSA is reduced in order to prevent the generation of a grating lobe during wide-angle beam scanning, the original ultra-wideband characteristics are degraded because of increased reflections from the ends of the tapered slot aperture. To overcome this difficulty, we propose a new antenna structure in which parallel-plate waveguides are added to the TSA. The advantage of this new structure is that the reflection characteristics of individual antenna elements are not degraded even if the width of the antenna aperture is very small, i.e., approximately one-half the wavelength of the highest operating frequency. In this study, we propose a procedure for designing the new antenna through numerical simulations by using the FDTD method. In addition, we verify the performance of the antenna array by experiments.