1-3hit |
Kiyoshi FUKUCHI Kayato SEKIYA Risato OHHIRA Yutaka YANO Takashi ONO
A 1.6-Tb/s dense WDM signal was successfully transmitted over 480 km using the carrier-suppressed return-to-zero (CS-RZ) modulation format. The CS-RZ format was chosen because it exhibited better transmission performance over a wide fiber-input power window than the NRZ and RZ formats in a 40-Gb/s-based WDM transmission experiment with 100-GHz channel spacing, confirming its nonlinearity-insensitive nature in dense WDM systems. With the wide power window of CS-RZ, we achieved stable transmission of 4040-Gb/s WDM signals over a 480-km (680 km) standard SMF line with only the C-band, in which a spectral ripple remained during transmission. Distributed Raman amplification and forward error correction were not used, providing a margin for already installed transmission lines.
Recent progress in ultrahigh bit rate optical transmission using time-division multiplexing and wavelength-division multiplexing is described. Latest over 1 Tbit/s transmission experiments are shown and the possibility of higher bit rate transmission is discussed.
Recent progress in ultrahigh bit rate optical transmission using time-division multiplexing and wavelength-division multiplexing is described. Latest over 1 Tbit/s transmission experiments are shown and the possibility of higher bit rate transmission is discussed.