The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] text recommendation(1hit)

1-1hit
  • MP-BERT4REC: Recommending Multiple Positive Citations for Academic Manuscripts via Content-Dependent BERT and Multi-Positive Triplet

    Yang ZHANG  Qiang MA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/08/08
      Vol:
    E105-D No:11
      Page(s):
    1957-1968

    Considering the rapidly increasing number of academic papers, searching for and citing appropriate references has become a nontrivial task during manuscript composition. Recommending a handful of candidate papers to a working draft could ease the burden of the authors. Conventional approaches to citation recommendation generally consider recommending one ground-truth citation from an input manuscript for a query context. However, it is common for a given context to be supported by two or more co-citation pairs. Here, we propose a novel scientific paper modelling for citation recommendations, namely Multi-Positive BERT Model for Citation Recommendation (MP-BERT4REC), complied with a series of Multi-Positive Triplet objectives to recommend multiple positive citations for a query context. The proposed approach has the following advantages: First, the proposed multi-positive objectives are effective in recommending multiple positive candidates. Second, we adopt noise distributions on the basis of historical co-citation frequencies; thus, MP-BERT4REC is not only effective in recommending high-frequency co-citation pairs, but it also significantly improves the performance of retrieving low-frequency ones. Third, the proposed dynamic context sampling strategy captures macroscopic citing intents from a manuscript and empowers the citation embeddings to be content-dependent, which allows the algorithm to further improve performance. Single and multiple positive recommendation experiments confirmed that MP-BERT4REC delivers significant improvements over current methods. It also effectively retrieves the full list of co-citations and historically low-frequency pairs better than prior works.