The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] thresholding(25hit)

21-25hit(25hit)

  • Novel Thresholding Algorithm for Change Detection in Video Sequence

    Byung-Gyu KIM  Dong-Jo PARK  

     
    LETTER-Pattern Recognition

      Vol:
    E87-D No:5
      Page(s):
    1271-1275

    A novel thresholding algorithm for change detection in video sequences is proposed. The method is based on image differencing and the intensity distribution of a difference image. With a difference image between two consecutive images, we prepare a new image model for the distribution of stationary pixels. The distribution of moving pixels is then separated by extracting the distribution of stationary pixels from the overall distribution of the difference image. Pixels that exhibit a significant change in intensity are classified using a likelihood criterion. The proposed algorithm is tested on the standard MPEG sequences and verified to have reliable performance.

  • Automatic Segmentation of a Brain Region in MR Images Using Automatic Thresholding and 3D Morphological Operations

    Tae-Woo KIM  Dong-Uk CHO  

     
    PAPER-Medical Engineering

      Vol:
    E85-D No:10
      Page(s):
    1698-1709

    A novel technique for automatic segmentation of a brain region in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in curve fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded brain masks. This method can automatically segment a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.

  • Detecting Perceptual Color Changes from Sequential Images for Scene Surveillance

    Mika RAUTIAINEN  Timo OJALA  Hannu KAUNISKANGAS  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1676-1683

    This paper proposes a methodology for detecting matte-surfaced objects on a scene using color information and spatial thresholding. First, a difference image is obtained via a pixel-wise comparison of the color content of a 'clean' reference image and a sample image. Then, spatial thresholding of the difference image is performed to extract any objects of interest, followed by morphological post-processing to remove pixel noise. We study the applicability of two alternate color spaces (HSV, CIE Lab) for computing the difference image. Similarly, we employ two spatial thresholding methods, which determine the global threshold from the local spatial properties of the difference image. We demonstrate the performance of the proposed approach in scene surveillance, where the objective is to monitor a shipping dock for the appearance of needless objects such as cardboard boxes. In order to analyze the robustness of the approach, the experiment includes three different types of scenes categorized as 'easy,' 'moderate,' and 'difficult,' based on properties such as heterogeneity of the background, existence of shadows and illumination changes, and reflectivity and chroma properties of the objects. The experimental results show that relatively good recognition accuracy is achieved on 'easy' and 'moderate' scenes, whereas 'difficult' scenes remain a challenge for future work.

  • Thresholding Based Image Segmentation Aided by Kleene Algebra

    Makoto ISHIKAWA  Naotake KAMIURA  Yutaka HATA  

     
    PAPER-Probability and Kleene Algebra

      Vol:
    E82-D No:5
      Page(s):
    962-967

    This paper proposes a thresholding based segmentation method aided by Kleene Algebra. For a given image including some regions of interest (ROIs for short) with the coherent intensity level, assume that we can segment each ROI on applying thresholding technique. Three segmented states are then derived for every ROI: Shortage denoted by logic value 0, Correct denoted by 1 and Excess denoted by 2. The segmented states for every ROI in the image can be then expressed on a ternary logic system. Our goal is then set to find "Correct (1)" state for every ROI. First, unate function, which is a model of Kleene Algebra, based procedure is proposed. However, this method is not complete for some cases, that is, correctly segmented ratio is about 70% for three and four ROI segmentation. For the failed cases, Brzozowski operations, which are defined on De Morgan algebra, can accommodate to completely find all "Correct" states. Finally, we apply these procedures to segmentation problems of a human brain MR image and a foot CT image. As the result, we can find all "1" states for the ROIs, i. e. , we can correctly segment the ROIs.

  • Morphology Based Thresholding for Character Extraction

    Yasuko TAKAHASHI  Akio SHIO  Kenichiro ISHII  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1208-1215

    The character binarization method MTC is developed for enhancing the recognition of characters in general outdoor images. Such recognition is traditionally difficult because of the influence of illumination changes, especially strong shadow, and also changes in character, such as apparent character sizes. One way to overcome such difficulties is to restrict objects to be processed by using strong hypotheses, such as type of object, object orientation and distance. Several systems for automatic license plate reading are being developed using such strong hypotheses. However. their strong assumptions limit their applications and complicate the extension of the systems. The MTC method assumes the most reasonable hypotheses possible for characters: they occupy plane areas, consist of narrow lines, and external shadow is considerably larger than character lines. The first step is to eliminate the effect of local brightness changes by enhancing feature including characters. This is achieved by applying mathematical morphology by using a logarithmic function. The enhanced gray-scale image is then binarized. Accurate binarization is achieved because local thresholds are determined from the edges detected in the image. The MTC method yields stable binary results under illumination changes, and, consequently, ensures high character reading rates. This is confirmed with a large number of images collected under a wide variety of weather conditions. It is also shown experimentally that MTC permits stable recognition rate even if the characters vary in size.

21-25hit(25hit)