The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time decay of magnetization(2hit)

1-2hit
  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Time Dependence of Magnetic Properties in Perpendicular Recording Media

    Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E80-C No:9
      Page(s):
    1180-1186

    Time decay of magnetic properties in perpendicular magnetic recording media was studied. It was suggested that magnetization in media with a low energy ratio, KV/kT, of 50 is thermally stable in the absence of a demagnetizing field while coercivity exhibits a large time dependence. Magnetization in perpendicular recording media exhibited an appreciable time decay even for films with a large energy ratio of 300. The decay is attributed to the small perpendicular squareness due to a large perpendicular demagnetizing field acting in the media. The recording density dependence of the time decay in the output was explained in terms of the change in the demagnetizing field with the density. It is concluded that the use of media with large squareness as well as large energy ratio effectively reduces time decay in the output.