The search functionality is under construction.

Keyword Search Result

[Keyword] tone mapping(12hit)

1-12hit
  • A Hue-Preserving Tone Mapping Scheme Based on Constant-Hue Plane Without Gamut Problem

    Yuma KINOSHITA  Kouki SEO  Artit VISAVAKITCHAROEN  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1865-1871

    We propose a novel hue-preserving tone mapping scheme. Various tone mapping operations have been studied so far, but there are very few works on color distortion caused in image tone mapping. First, LDR images produced from HDR ones by using conventional tone mapping operators (TMOs) are pointed out to have some distortion in hue values due to clipping and rounding quantization processing. Next,we propose a novel method which allows LDR images to have the same maximally saturated color values as those of HDR ones. Generated LDR images by the proposed method have smaller hue degradation than LDR ones generated by conventional TMOs. Moreover, the proposed method is applicable to any TMOs. In an experiment, the proposed method is demonstrated not only to produce images with small hue degradation but also to maintain well-mapped luminance, in terms of three objective metrics: TMQI, hue value in CIEDE2000, and the maximally saturated color on the constant-hue plane in the RGB color space.

  • HDR Image Synthesis Using Visual Brightness Mapping and Local Surround-Based Image Fusion

    Sung-Hak LEE  

     
    PAPER

      Vol:
    E102-C No:11
      Page(s):
    802-809

    An HDR (High Dynamic Range) image synthesis is a method which is to photograph scenes with wide luminance range and to reproduce images close to real visual scenes on an LDR (Low Dynamic Range) display. In general, HDR images are reproduced by taking images with various camera exposures and using the tone synthesis of several images. In this paper, we propose an HDR image tone mapping method based on a visual brightness function using dual exposed images and a synthesis algorithm based on local surround. The proposed algorithm has improved boundary errors and color balance compared with existing methods. Also, it improves blurring and noise amplification due to image mixing.

  • A Pseudo Multi-Exposure Fusion Method Using Single Image

    Yuma KINOSHITA  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1806-1814

    This paper proposes a novel pseudo multi-exposure image fusion method based on a single image. Multi-exposure image fusion is used to produce images without saturation regions, by using photos with different exposures. However, it is difficult to take photos suited for the multi-exposure image fusion when we take a photo of dynamic scenes or record a video. In addition, the multi-exposure image fusion cannot be applied to existing images with a single exposure or videos. The proposed method enables us to produce pseudo multi-exposure images from a single image. To produce multi-exposure images, the proposed method utilizes the relationship between the exposure values and pixel values, which is obtained by assuming that a digital camera has a linear response function. Moreover, it is shown that the use of a local contrast enhancement method allows us to produce pseudo multi-exposure images with higher quality. Most of conventional multi-exposure image fusion methods are also applicable to the proposed multi-exposure images. Experimental results show the effectiveness of the proposed method by comparing the proposed one with conventional ones.

  • Fast Inverse Tone Mapping Based on Reinhard's Global Operator with Estimated Parameters

    Yuma KINOSHITA  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER-Image Processing

      Vol:
    E100-A No:11
      Page(s):
    2248-2255

    This paper proposes a new inverse tone mapping operator (TMO) with estimated parameters. The proposed inverse TMO is based on Reinhard's global operator which is a well-known TMO. Inverse TM operations have two applications: generating an HDR image from an existing LDR one, and reconstructing an original HDR image from the mapped LDR image. The proposed one can be applied to both applications. In the latter application, two parameters used in Reinhard's TMO, i.e. the key value α regarding brightness of a mapped LDR one and the geometric mean $overline{L}_w$ of an original HDR one, are generally required for carrying out the Reinhard based inverse TMO. In this paper, we show that it is possible to estimate $overline{L}_w$ from α under some conditions, while α can be also estimated from $overline{L}_w$, so that a new inverse TMO with estimated parameter is proposed. Experimental results show that the proposed method outperforms conventional ones for both applications, in terms of high structural similarities and low computational costs.

  • Enhanced Depiction of High Dynamic Images Using Tone Mapping Operator and Chromatic Adaptation Transform

    Ho-Hyoung CHOI  Byoung-Ju YUN  

     
    BRIEF PAPER

      Vol:
    E100-C No:11
      Page(s):
    1031-1034

    The problem of reproducing high dynamic range (HDR) images on devices with a restricted dynamic range has gained a lot of interest in the computer graphics community. Various approaches to this issue exist, spanning several research areas, including computer graphics, image processing, color vision, and physiology. However, most of the approaches to the issue have several serious well-known color distortion problems. Accordingly, this article presents a tone-mapping method. The proposed method comprises the tone-mapping operator and the chromatic adaptation transform. The tone-mapping method is combined with linear and non-linear mapping using visual gamma based on contrast sensitive function (CSF) and using key of scene value, where the visual gamma is adopted to automatically control the dynamic range, parameter free, as well as to avoid both the luminance shift and the hue shift in the displayed images. Furthermore, the key of scene value is used to represent whether the scene was subjectively light, norm, dark. The resulting image is then processed through a chromatic adaptation transform and emphasis lies in human visual perception (HVP). The experiment results show that the proposed method yields better performance of the color rendering over the conventional method in subjective and quantitative quality and color reproduction.

  • An Remapping Operation without Tone Mapping Parameters for HDR Images

    Yuma KINOSHITA  Sayaka SHIOTA  Masahiro IWAHASHI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E99-A No:11
      Page(s):
    1955-1961

    A number of successful tone mapping operators (TMOs) for contrast compression have been proposed due to the need to visualize high dynamic range (HDR) images on low dynamic range devices. This paper proposes a novel inverse tone mapping (TM) operation and a new remapping framework with the operation. Existing inverse TM operations require either the store of some parameters calculated in forward TM, or data-depended operations. The proposed inverse TM operation enables to estimate HDR images from LDR ones mapped by the Reinhard's global operator, not only without keeping any parameters but also without any data-depended calculation. The proposed remapping framework with the inverse operation consists of two TM operations. The first TM operation is carried out by the Reinhard's global operator, and then the generated LDR one is stored. When we want different quality LDR ones, the proposed inverse TM operation is applied to the stored LDR one to generate an HDR one, and the second TM operation is applied to the HDR one to generate an LDR one with desirable quality, by using an arbitrary TMO. This framework allows not only to visualize an HDR image on low dynamic range devices at low computing cost, but also to efficiently store an HDR one as an LDR one. In simulations, it is shown that the proposed inverse TM operation has low computational cost, compared to the conventional ones. Furthermore, it is confirmed that the proposed framework allows to remap the stored LDR one to another LDR one whose quality is the same as that of the LDR one remapped by the conventional inverse TMO with parameters.

  • A Unified Tone Mapping Operation for HDR Images Expressed in Integer Data

    Toshiyuki DOBASHI  Masahiro IWAHASHI  Hitoshi KIYA  

     
    LETTER-Image

      Vol:
    E99-A No:3
      Page(s):
    774-776

    This letter considers a unified tone mapping operation (TMO) for HDR images. The unified TMO can perform tone mapping for various HDR image formats with a single common operation. The integer TMO which can realize unified tone mapping by converting an input HDR image into an intermediate format is proposed. This method can be executed efficiently with low memory and low performance processor. However, only floating-point HDR image formats have been considered in the method. In other words, a long-integer which is one of the HDR image formats has not been considered in the method. This letter applies the method to a long-integer format, and confirm its performance. The experimental results show the proposed method is effective for an integer format in terms of the resources such as the computational cost and the memory cost.

  • A Fixed-Point Global Tone Mapping Operation for HDR Images in the RGBE Format

    Toshiyuki DOBASHI  Tatsuya MUROFUSHI  Masahiro IWAHASHI  Hitoshi KIYA  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2147-2153

    A global tone mapping operation (TMO) for high dynamic range (HDR) images with fixed-point arithmetic is proposed and evaluated in this paper. A TMO generates a low dynamic range (LDR) image from an HDR image by compressing its dynamic range. Since an HDR image is generally expressed in a floating-point data format, a TMO also deals with floating-point data even though a resultant LDR image is integer data. The proposed method treats a floating-point number as two 8-bit integer numbers which correspond to an exponent part and a mantissa part, and applies tone mapping to these integer numbers separately. Moreover, the method conducts all calculations in the tone mapping with only fixed-point arithmetic. As a result, the method reduces a memory cost and a computational cost. The evaluation shows that the proposed method reduces 81.25% of memory usage. The experimental results show that the processing speed of the proposed method with fixed-point arithmetic is 23.1 times faster than the conventional method with floating-point arithmetic. Furthermore, they also show the PSNR of LDR images obtained by the proposed method are comparable to those of the conventional method, though reducing computational and memory cost.

  • Watermarking for HDR Image Robust to Tone Mapping

    Xinwei XUE  Takao JINNO  Xin JIN  Masahiro OKUDA  Satoshi GOTO  

     
    PAPER-Image Processing

      Vol:
    E94-A No:11
      Page(s):
    2334-2341

    High Dynamic Range (HDR) images have been widely applied in daily applications. However, HDR image is a special format, which needs to be pre-processed known as tone mapping operators for display. Since the visual quality of HDR images is very sensitive to luminance value variations, conventional watermarking methods for low dynamic range (LDR) images are not suitable and may even cause catastrophic visible distortion. Currently, few methods for HDR image watermarking are proposed. In this paper, two watermarking schemes targeting HDR images are proposed, which are based on µ-Law and bilateral filtering, respectively. Both of the subjective and objective qualities of watermarked images are greatly improved by the two methods. What's more, these proposed methods also show higher robustness against tone mapping operations.

  • µ-Law Based HDR Coding and Its Error Analysis

    Takao JINNO  Hironori KAIDA  Xinwei XUE  Nicola ADAMI  Masahiro OKUDA  

     
    PAPER-Image

      Vol:
    E94-A No:3
      Page(s):
    972-978

    In this paper, we propose a coding algorithm for High Dynamic Range Images (HDRI). Our encoder applies a tone mapping model based on scaled µ-Law encoding, followed by a conventional Low Dynamic Range Image (LDRI) encoder. The tone mapping model is designed to minimize the difference between the tone-mapped HDRI and its LDR version. By virtue of the nature of the µ-Law model, not only the quality of the HDRI but also the one of the LDRI is improved, compared with a state of the art in conventional HDRI coding methods. Furthermore the error limit caused by our encoding is theoretically analyzed.

  • High Contrast HDR Video Tone Mapping Based on Gamma Curves

    Takao JINNO  Kazuya MOURI  Masahiro OKUDA  

     
    PAPER-Processing

      Vol:
    E94-A No:2
      Page(s):
    525-532

    In this paper we propose a new tone mapping method for HDR video. Two types of gamma tone mapping are blended to preserve local contrast in the entire range of luminance. Our method achieves high quality tone mapping especially for the HDR video that has a nonlinear response to scene radiance. Additionally, we apply it to an object-aware tone mapping method for camera surveillance. This method achieves high visibility of target objects in the tone mapped HDR video. We examine the validity of our methods through simulation and comparison with conventional work.

  • A Novel Tone Mapping Based on Double-Anchoring Theory for Displaying HDR Images

    Jinhua WANG  De XU  Bing LI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E92-D No:12
      Page(s):
    2487-2497

    In this paper, we present a Double-Anchoring Based Tone Mapping (DABTM) algorithm for displaying high dynamic range (HDR) images. First, two anchoring values are obtained using the double-anchoring theory. Second, we use the two values to formulate the compressing operator, which can achieve the aim of tone mapping directly. A new method based on accelerated K-means for the decomposition of HDR images into groups (frameworks) is proposed. Most importantly, a group of piecewise-overlap linear functions is put forward to define the belongingness of pixels to their locating frameworks. Experiments show that our algorithm is capable of achieving dynamic range compression, while preserving fine details and avoiding common artifacts such as gradient reversals, halos, or loss of local contrast.