The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] total-field/scattered-field boundary(2hit)

1-2hit
  • A Total-Field/Scattered-Field Boundary for the Multi-Dimensional CIP Method

    Yoshiaki ANDO  Satoi MURAKOSHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:1
      Page(s):
    115-121

    A total-field/scattered-field (TF/SF) boundary for the constrained interpolation profile (CIP) method is proposed for multi-dimensional electromagnetic problems. Incident fields are added to or subtracted from update equations in order to satisfy advection equations into which Maxwell's equations are reduced by means of the directional splitting. Modified incident fields are introduced to take into account electromagnetic fields after advection. The developed TF/SF boundary is examined numerically, and the results show that it operates with good performance. Finally, we apply the proposed TF/SF boundary to a scattering problem, and it can be solved successfully.

  • A Nearly Perfect Total-Field/Scattered-Field Boundary for the One-Dimensional CIP Method

    Yoshiaki ANDO  Hiroyuki SAITO  Masashi HAYAKAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1677-1683

    A total-field/scattered-field (TF/SF) boundary which is commonly used in the finite-difference time-domain (FDTD) method to illuminate scatterers by plane waves, is developed for use in the constrained interpolation profile (CIP) method. By taking the numerical dispersion into account, the nearly perfect TF/SF boundary can be achieved, which allows us to calculate incident fields containing high frequency components without fictitious scattered fields. First of all, we formulate the TF/SF boundary in the CIP scheme. The numerical dispersion relation is then reviewed. Finally the numerical dispersion is implemented in the TF/SF boundary to estimate deformed incident fields. The performance of the nearly perfect TF/SF boundary is examined by measuring leaked fields in the SF region, and the proposed method drastically diminish the leakage compared with the simple TF/SF boundary.