The search functionality is under construction.

Keyword Search Result

[Keyword] traffic load(6hit)

1-6hit
  • Node Degree Based Routing Metric for Traffic Load Distribution in the Internet

    Jun'ichi SHIMADA  Hitomi TAMURA  Masato UCHIDA  Yuji OIE  

     
    PAPER

      Vol:
    E96-D No:2
      Page(s):
    202-212

    Congestion inherently occurs on the Internet due to traffic concentration on certain nodes or links of networks. The traffic concentration is caused by inefficient use of topological information of networks in existing routing protocols, which reduces to inefficient mapping between traffic demands and network resources. Actually, the route with minimum cost, i.e., number of hops, selected as a transmission route by existing routing protocols would pass through specific nodes with common topological characteristics that could contribute to a large improvement in minimizing the cost. However, this would result in traffic concentration on such specific nodes. Therefore, we propose a measure of the distance between two nodes that is suitable for reducing traffic concentration on specific nodes. To consider the topological characteristics of the congestion points of networks, we define node-to-node distance by using a generalized norm, p-norm, of a vector of which elements are degrees of intermediate nodes of the route. Simulation results show that both the maximum Stress Centrality (SC) and the coefficient of variation of the SC are minimized in some network topologies by selecting transmission routes based on the proposed measure of node-to-node distance.

  • An Inter-Domain Path Computation Scheme Adaptive to Traffic Load in Domains

    Nagao OGINO  Hajime NAKAMURA  

     
    PAPER-Network

      Vol:
    E93-B No:4
      Page(s):
    907-915

    The establishment of inter-domain traffic engineered paths is a requisite to accomplishing an end-to-end bandwidth guarantee and end-to-end resource optimization. Though the inter-domain paths must be reliable, it is difficult to compute suitable backup inter-domain paths in advance when the traffic engineering information is not disclosed outside of each domain. This means that the inter-domain path computation must satisfy the severe requirement of path establishment delay, since all inter-domain paths traversing the links in failure need to be computed after the failure occurs. Though several inter-domain path computation schemes have been proposed, their relative characteristics remain unknown. First, this paper classifies the conventional inter-domain path computation schemes into two types, i.e. end-to-end and per-domain schemes, and compares their performances under various traffic loads. Based on results of the comparisons, this paper proposes an adaptive inter-domain path computation scheme that can satisfy the severe requirement of the path establishment delay. In this scheme, the domain sequence from the source node to the destination node is divided into multiple sub-domain sequences according to the traffic load in each domain. The end-to-end path computation scheme is applied to the sub-domain sequences under heavy traffic loads, while the per-domain path computation scheme is applied to those under normal traffic loads. The simulation results show that the proposed scheme can adaptively satisfy the requirement for the path establishment delay while it maintains the optimality of path computation, even if the traffic load applied to each domain changes.

  • Distributed Channel Assignment Scheme Supporting Various Traffic Loads in Microcellular Systems

    Seung-young PARK  Hyun-hee LEE  Kyung-goo JUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:3
      Page(s):
    766-770

    In this letter, we propose a distributed channel assignment where each basestation selects a set of channels shared by multiple users through time domain scheduling for best effort services. The proposed scheme distributedly assigns the channels considering a cochannel interference from neighboring basestations and its own traffic load condition. The computer simulation demonstrates that the proposed scheme appropriately assigns the channels to the basestations taking into account these requirements.

  • A Seamless Handoff Scheme with Access Point Load Balance for Real-Time Services Support in 802.11 Wireless LANs

    Thavisak MANODHAM  Luis LOYOLA  Tetsuya MIKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1463-1471

    IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.

  • An Adaptive Traffic Load Balancing Method for Multi-Hop Mesh Networks in Broadband Fixed Wireless Access Systems

    Yoji KISHI  Takeshi KITAHARA  Yujin NOISHIKI  Akira IDOUE  Shinichi NOMOTO  

     
    PAPER

      Vol:
    E88-B No:4
      Page(s):
    1355-1363

    Broadband fixed wireless access (BFWA) systems with multi-hop mesh topologies have attracted considerable attention as a promising technology for next generation, high quality, high capacity, and high density access infrastructures. The primary advantages of mesh network topologies are an improvement of capacity by means of traffic engineering throughout the networks. This paper discusses an adaptive traffic load balancing method that maximizes the capacity for the mesh BFWA networks. Taking into account the variation of network conditions such as traffic demand distributions and qualities of wireless links, the adaptive traffic load balancing method attempts to equalize the utilization of capacity for each wireless link. To avoid deteriorating the performance of TCP communications, the proposed method implements flow-based traffic load balancing. Performance of the proposed adaptive traffic load balancing method is demonstrated and validated using the experimental mesh network environments with wired networks with up to sixteen nodes that emulates the variation of the wireless link capacity.

  • Traffic Load Estimation Based on System Identification

    Makoto TAKANO  Naofumi NAGAI  

     
    PAPER

      Vol:
    E77-B No:3
      Page(s):
    378-385

    This paper describes a new method to estimate traffic load of communication nodes, such as switching systems. The new method uses the system identification, which is often used in designing control systems of real systems. First, this paper makes clear that, under certain conditions, the input and output relation of a communication system, which is composed of a number of communication nodes, is formulated into a dynamic state equation that is classed as a time-invariant, single-input single-output, discrete-time system. Next, it is explained that traffic load information is estimated by identifying the dynamic state equations of the communication system. Then, the traffic load estimator is synthesized using the system identification in it. Finally, it is clarified by computation simulations that the proposed method is very applicable in estimating the traffic load of each communication node.