1-2hit |
This paper claims to use a new question expansion method for question classification in cQA services. The input questions consist of only a question whereas training data do a pair of question and answer. Thus they cannot provide enough information for good classification in many cases. Since the answer is strongly associated with the input questions, we try to create a pseudo answer to expand each input question. Translation probabilities between questions and answers and a pseudo relevant feedback technique are used to generate the pseudo answer. As a result, we obtain the significant improved performances when two approaches are effectively combined.
Hyoung-Gyu LEE Min-Jeong KIM YingXiu QUAN Hae-Chang RIM So-Young PARK
The general method for estimating phrase translation probabilities consists of sequential processes: word alignment, phrase pair extraction, and phrase translation probability calculation. However, during this sequential process, errors may propagate from the word alignment step through the translation probability calculation step. In this paper, we propose a new method for estimating phrase translation probabilities that reduce the effects of error propagation. By considering the semantic recoverability of phrase retranslation, our method identifies incorrect phrase pairs that have propagated from alignment errors. Furthermore, we define retranslation similarity which represents the semantic recoverability of phrase retranslation, and use this when computing translation probabilities. Experimental results show that the proposed phrase translation estimation method effectively prevents a PBSMT system from selecting incorrect phrase pairs, and consistently improves the translation quality in various language pairs.