1-3hit |
Ye Hoon LEE Nam-Soo KIM Seung Young PARK
The optimal antenna weighting scheme that minimizes the average bit error rate in a closed-loop transmit antenna diversity system is investigated under the assumption that channel state information is provided at both the transmitter and the receiver. A closed-form expression for the optimal transmitter weights is derived with a fixed average transmit power constraint. Also, the effect of limited peak transmit power on the performance of the optimal weighting method is analyzed. Base on this analysis, it is shown that the proposed transmitter weights yield significant performance improvements over the conventional weights on the wide range of practical system parameters.
The effect of feedback delay and channel estimation error on closed-loop transmit diversity (CTD) systems is investigated in time-selective Rayleigh fading channels. Based on a minimum mean square error (MMSE) channel estimator, the variance of the estimation error is formulated in terms of fading index and the number of transmit antennas. A bit error rate (BER) expression for the CTD system is analytically derived as a function of channel estimation error, feedback delay, and fading index. It is shown that the BER performance of the CTD system improves as the length of training symbols increases and/or the frame length decreases. In the CTD system, more accurate channel estimation scheme is required to achieve its full gain as the number of employed transmit antennas increases. It is also found that the CTD system is applicable to the slowly moving channel environments, such as pedestrians, but not for fast moving vehicles.
Yan ZHOU Francois CHIN Ying-Chang LIANG Chi-Chung KO
In this paper, a novel beam selection transmit diversity (BSTD) scheme is proposed for the downlink transmission of frequency division duplex (FDD) based DS-CDMA system. As a combination of selection transmit diversity and steering vector based beamforming, the BSTD scheme provides diversity gain as well as reducing multiple access interference in downlink. Moreover, to have a better understanding, the performance of the BSTD is also compared with other schemes. The comparison results show that the BSTD would be a promising candidate for the downlink transmission if both performance and implementation complexity are considered.