The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tri-axial accelerometer(2hit)

1-2hit
  • Activity Recognition Based on an Accelerometer in a Smartphone Using an FFT-Based New Feature and Fusion Methods

    Yang XUE  Yaoquan HU  Lianwen JIN  

     
    LETTER-Human-computer Interaction

      Vol:
    E97-D No:8
      Page(s):
    2182-2186

    With the development of personal electronic equipment, the use of a smartphone with a tri-axial accelerometer to detect human physical activity is becoming popular. In this paper, we propose a new feature based on FFT for activity recognition from tri-axial acceleration signals. To improve the classification performance, two fusion methods, minimal distance optimization (MDO) and variance contribution ranking (VCR), are proposed. The new proposed feature achieves a recognition rate of 92.41%, which outperforms six traditional time- or frequency-domain features. Furthermore, the proposed fusion methods effectively improve the recognition rates. In particular, the average accuracy based on class fusion VCR (CFVCR) is 97.01%, which results in an improvement in accuracy of 4.14% compared with the results without any fusion. Experiments confirm the effectiveness of the new proposed feature and fusion methods.

  • Discrimination between Upstairs and Downstairs Based on Accelerometer

    Yang XUE  Lianwen JIN  

     
    LETTER

      Vol:
    E94-D No:6
      Page(s):
    1173-1177

    An algorithm for the discrimination between human upstairs and downstairs using a tri-axial accelerometer is presented in this paper, which consists of vertical acceleration calibration, extraction of two kinds of features (Interquartile Range and Wavelet Energy), effective feature subset selection with the wrapper approach, and SVM classification. The proposed algorithm can recognize upstairs and downstairs with 95.64% average accuracy for different sensor locations, i.e. located on the subject's waist belt, in the trousers pocket, and in the shirt pocket. Even for the mixed data from all sensor locations, the average recognition accuracy can reach 94.84%. Experimental results have successfully validated the effectiveness of the proposed method.