The search functionality is under construction.

Keyword Search Result

[Keyword] trip planning(2hit)

1-2hit
  • Tourism Application Considering Waiting Time

    Daiki SAITO  Jeyeon KIM  Tetsuya MANABE  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    633-643

    Currently, the proportion of independent travel is increasing in Japan. Therefore, earlier studies supporting itinerary planning have been presented. However, these studies have only insufficiently considered rural tourism. For example, tourist often use public transportation during trips in rural areas, although it is often difficult for a tourist to plan an itinerary for public transportation. Even if an itinerary can be planned, it will entail long waiting times at the station or bus stop. Nevertheless, earlier studies have only insufficiently considered these elements in itinerary planning. On the other hand, navigation is necessary in addition to itinerary creation. Particularly, recent navigation often considers dynamic information. During trips using public transportation, schedule changes are important dynamic information. For example, tourist arrive at bus stop earlier than planned. In such case, the waiting time will be longer than the waiting time included in the itinerary. In contrast, if a person is running behind schedule, a risk arises of missing bus. Nevertheless, earlier studies have only insufficiently considered these schedule changes. In this paper, we construct a tourism application that considers the waiting time to improve the tourism experience in rural areas. We define waiting time using static waiting time and dynamic waiting time. Static waiting time is waiting time that is included in the itinerary. Dynamic waiting time is the waiting time that is created by schedule changes during a trip. With this application, static waiting times is considered in the planning function. The dynamic waiting time is considered in the navigation function. To underscore the effectiveness of this application, experiments of the planning function and experiments of the navigation function is conducted in Tsuruoka City, Yamagata Prefecture. Based on the results, we confirmed that a tourist can readily plan a satisfactory itinerary using the planning function. Additionally, we confirmed that Navigation function can use waiting times effectively by suggesting additional tourist spots.

  • Personalized Trip Planning Considering User Preferences and Environmental Variables with Uncertainty

    Mingu KIM  Seungwoo HONG  Il Hong SUH  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2195-2204

    Personalized trip planning is a challenging problem given that places of interest should be selected according to user preferences and sequentially arranged while satisfying various constraints. In this study, we aimed to model various uncertain aspects that should be considered during trip planning and efficiently generate personalized plans that maximize user satisfaction based on preferences and constraints. Specifically, we propose a probabilistic itinerary evaluation model based on a hybrid temporal Bayesian network that determines suitable itineraries considering preferences, constraints, and uncertain environmental variables. The model retrieves the sum of time-weighted user satisfaction, and ant colony optimization generates the trip plan that maximizes the objective function. First, the optimization algorithm generates candidate itineraries and evaluates them using the proposed model. Then, we improve candidate itineraries based on the evaluation results of previous itineraries. To validate the proposed trip planning approach, we conducted an extensive user study by asking participants to choose their preferred trip plans from options created by a human planner and our approach. The results show that our approach provides human-like trip plans, as participants selected our generated plans in 57% of the pairs. We also evaluated the efficiency of the employed ant colony optimization algorithm for trip planning by performance comparisons with other optimization methods.