The search functionality is under construction.

Keyword Search Result

[Keyword] ultrafast optics(5hit)

1-5hit
  • Photoconductive Generation and Detection of Guided-Wave and Free-Space Terahertz Waveforms

    Abdulhakem Y. ELEZZABI  Jonathan F. HOLZMAN  

     
    INVITED PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1218-1225

    We report on several photoconductive (PC) geometries for the generation of both guided-wave and free-space terahertz (THz) waveforms. It is found that guided-wave THz electrical waveforms can be produced through both PC self-switching and frozen wave generation--eliminating the need for an ultrashort carrier lifetime in the semiconductor substrate. The concept of PC switching is also applied to the generation of free-space THz waveforms, and various ZnSe detectors are investigated as potential electro-optic THz sensors.

  • Electro-Optic Probing for Microwave Diagnostics

    John F. WHITAKER  Kyoung YANG  Ronald REANO  Linda P. B. KATEHI  

     
    INVITED PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1328-1337

    This review paper addresses an emerging aspect of the relationship between optics and microwave electronics: the application of short pulses of laser light to the sensing and measurement of continuous-wave microwave fields. In particular, very short duration optical pulses can take on the role of ultrafast sampling gates within the framework of the electro-optic sampling technique in order to realize unprecedented temporal resolution, measurement bandwidth, and probing flexibility. As a result, in numerous instances electro-optic sampling has been demonstrated, primarily within the research laboratory, to be an effective tool in the field of diagnostic testing and the determination of the electrical characteristics of microwave components. Recently, with the emergence of new applications such as microwave electric-field mapping in wireless and radar environments, and as the ultrafast time domain has gained in importance for the area of optical telecommunications, added attention has been directed to electro-optic sampling. Herein, an abbreviated historical perspective of the history of electro-optic field mapping is presented, along with the fundamental concepts that are utilized in the technique. The effectiveness of an optical-fiber-mounted electro-optic probe in a scanning electric-field-mapping system is highlighted in several diagnostic measurements on microwave and millimeter-wave antenna arrays, and a combined electric-field and thermal-imaging capability is also introduced.

  • The Femtosecond Technology Project Pioneers Ultrafast Photonic Device Technology for the Next Generation Photonic Networking

    Fujio SAITO  

     
    INVITED PAPER-Femtosecond Technology for Photonic Networks

      Vol:
    E85-C No:1
      Page(s):
    106-116

    Recent activities on ultrafast photonic device technology development in the Femtosecond Technology Project sponsored by NEDO are introduced. Topics include management and control of the higher order dispersions of optical fibers, ultrafast mode-locked semiconductor laser, symmetric Mach-Zehnder type all-optical switch, ultrafast serial-to-parallel signal converter and sub-picosecond wavelength switch. Challenges towards novel ultrafast switching material systems are also described.

  • A Feasible All Optical Soliton Based Inter-LAN Network Using Time Division Multiplexing

    Akira HASEGAWA  Hiroyuki TODA  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:8
      Page(s):
    1681-1686

    By sacrificing approximately ten percent of the transmission speed, ultra-high speed optical time division multiplexed network can be fully operatable by the use of currently available electrical switches. The network utilizes dispersion managed quasi-solitons and transmits TDM packet which comprises of ATM cells that are introduced from a gateway through bit compression to match to the ultra-high speed traffics. The network can provide flexible bandwidth and bit on demand at burst rate of the maximum LAN speed.

  • Extreme Nonlinear Optics with Few-Cycle Laser Pulses

    Matthias LENZNER  Matthias SCHNURER  Christian SPIELMANN  Ferenc KRAUSZ  

     
    INVITED PAPER-Femtosecond Solid State Lasers

      Vol:
    E81-C No:2
      Page(s):
    112-122

    Recent advances in solid-state laser technology and ultrafast optics led to the generation of optical pulses as short as 5 femtoseconds with peak powers up to the subterawatt level from a compact kHz-repetition-rate all-solid-state laser. This source significantly pushes the frontiers of nonlinear optics. Exciting new possibilities include the investigation and exploitation of reversible nonlinear optical processes in solids at unprecedented intensity levels, the development of a compact laser-driven coherent soft-X ray source at photon energies near 1 keV, and the generation of attosecond xuv pulses. First, a brief review of recent milestones in the evolution of ultrafast laser technology is given, followed by a description of the high-power 5-fs source. The rest of the paper is devoted to applications in previously inaccessible regimes of nonlinear optics. We demonstrate that wide-gap dielectrics resist intensities in excess of 1014 W/cm2 in the sub-10 fs regime and the extension of high-harmonic generation in helium to wavelengths shorter than 2. 4 nm (Eph > 0. 5 keV).