The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ultrashort light pulse(6hit)

1-6hit
  • Improvement of Coherent Ultrashort Light Pulse CDMA Communication Systems with Distinct 4-Level m-Sequences

    Yasutaka IGARASHI  Ippei OKAJIMA  Hiroyuki YASHIMA  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3018-3025

    Optical fiber communications require multiple-access schemes to access a shared channel among multiple users. The coherent ultrashort light pulse code-division multiple-access (CDMA) system is one such scheme, and it also offers asynchronous-access communication. This system usually employs 2-level, i.e., binary, m-sequences as signature codes because of their low correlation. If the number of active users is greater than the length of the m-sequence, i.e., code length, distinct m-sequences are used. However, the distinct 2-level m-sequences do not exhibit low correlation, resulting in performance degradation. We therefore propose a coherent ultrashort light pulse CDMA communication system with distinct 4-level, i.e., quaternary, m-sequences to improve system performance when the number of users is greater than the code length. We created the 4-level m-sequences from 2-level m-sequences, and assess the correlation of the 4-level m-sequences. We also theoretically derive the bit error rate (BER) of the proposed system taking into account multiple-access interference (MAI), beat noise, amplified spontaneous emission (ASE), shot noise, and thermal noise. The numerical results show that BER for distinct 4-level m-sequences is more than an order of magnitude smaller than that for distinct 2-level m-sequences. BER is limited by MAI and beat noise when the power of the received signal is high, otherwise BER is limited by ASE, shot noise, and thermal noise.

  • Performance Analysis of Coherent Ultrashort Light Pulse CDMA Communication Systems with Nonlinear Optical Thresholder

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:4
      Page(s):
    1205-1213

    We theoretically analyze the performance of coherent ultrashort light pulse code-division multiple-access (CDMA) communication systems with a nonlinear optical thresholder. The coherent ultrashort light pulse CDMA is a promising system for an optical local area network (LAN) due to its advantages of asynchronous transmission, high information security, multiple access capability, and optical processing. The nonlinear optical thresholder is based on frequency chirping induced by self-phase modulation (SPM) in optical fiber, and discriminates an ultrashort pulse from multiple access interference (MAI) with picosecond duration. The numerical results show that the thermal noise caused in a photodetector dominates the bit error rate (BER). BER decreases as the fiber length in the nonlinear thresholder and the photocurrent difference in the photodetector increase. Using the nonlinear optical thresholder allows for the response time of the photodetector to be at least 100 times the duration of the ultrashort pulses. We also show that the optimum cut-off frequency at the nonlinear thresholder to achieve the minimum BER increases with fiber length, the total number of users, and the load resistance in the photodetector.

  • Dispersion Compensation for Ultrashort Light Pulse CDMA Communication Systems

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2776-2784

    We investigate dispersion compensation using dispersion-compensating fibers (DCFs) for ultrashort light pulse code division multiple access (CDMA) communication systems in a multi-user environment. We employ fiber link that consists of a standard single-mode fiber (SMF) connected with two different types of DCFs. Fiber dispersion can be effectively decreased by adjusting the length ratios of DCFs to SMF appropriately. Some criteria for dispersion compensation are proposed and their performances are compared. We theoretically derive a bit error rate (BER) of ultrashort light pulse CDMA systems including the effects of the dispersion and multiple access interference (MAI). Moreover, we reveal the mutual relations among BER performance, fiber dispersion, MAI, the number of chips, a bandwidth of a signal, and a transmission distance for the first time. As a result, we show that our compensation strategy improves system performance drastically.

  • Highly Reliable Mode-Locked Semiconductor Lasers

    Hiroyuki YOKOYAMA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    27-36

    Very reliable mode-locked semiconductor lasers have been developed. These devices provide high signal-to-noise ratio optical clock pulses of a few picoseconds temporal width in the 1.5-micrometer wavelength region. Potential applications of these lasers for high-bit-rate optical communication systems operating at over 40 Gbps including all-optical signal processing, and for very high-speed measurement systems are described.

  • Performance Analysis of Optical Frequency-Domain Encoding CDMA Enhancement of Frequency Division Multiplexing

    Katsuhiro KAMAKURA  Yoshinobu GAMACHI  Hideyuki UEHARA  Tomoaki OHTSUKI  Iwao SASASE  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:9
      Page(s):
    1749-1757

    Optical frequency division multiplexing (FDM) technique has the advantage of fully orthogonal transmissions. However, FDM system permits only a small number of FDM channels despite of a great effort, such as frequency stabilization. On the other hand, frequency-domain encoding code-division multiple-access (FE-CDMA) has been widely studied as a type of optical CDMA. In this system, encoding is done in the frequency domain of an ultrashort light pulse spread by optically Fourier transform. However, FE-CDMA accommodates very limited number of simultaneous users, though this scheme uses a vast optical bandwidth. It is attractive to consider the combination of both advantages of FDM and FE-CDMA. We propose FE-CDMA enhancement of FDM (FDM/FE-CDMA). Since in FDM/FE-CDMA the total bandwidth is partitioned into M optical bands and each band is encoded by the code with code length of Nc, we expect nearly perfect orthogonal transmissions. In addition, since the creation of FDM bands is realized by a passive filter, the optical frequency is precisely controlled and the optical frequency allocation is flexible. We derive the bit error rate (BER) as a function of the number of simultaneous users, bit rate, and the utilization efficiency of total bandwidth. We compare the performance of FDM/FE-CDMA with that of the conventional FE-CDMA in terms of the number of simultaneous users on condition that each chip width is constant. As a result, we show that FDM/FE-CDMA can support the larger number of simultaneous users than the conventional FE-CDMA at a given bit error rate under the same total bandwidth.

  • Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers

    Hisakazu KURITA  Ichiro OGURA  Hiroyuki YOKOYAMA  

     
    INVITED PAPER-Mode-locked and Gain-switched Laser Diodes and High speed EA Modulators

      Vol:
    E81-C No:2
      Page(s):
    129-139

    The novel application potential of mode-locked laser diodes (MLLDs) in ultrafast optical signal processing in addition to coherent optical pulse generation is described. As the most fundamental function of MLLDs, we show that the generation of ultrashort (2 ps) coherent optical pulses with low timing jitter (<0. 5 ps) at precisely controlled wavelength and repetition frequency can be achieved by employing a rigid module configuration for an external-cavity MLLD. We then discuss new aspects of MLLDs which are functions of ultrafast all-optical signal processing such as optical clock extraction and optical gating. All-optical clock extraction is based on the timing synchronization of MLLD output to the injected optical data pulse. When the passive mode-locking frequency of an MLLD is very close to the fundamental clock pulse frequency of optical data, the former frequency is pulled into the latter frequency by optical data injection. We show that same-frequency and subharmonic-frequency optical clock pulses can successfully be extracted from optical data pulses at bit rates of up to 80 Gbit/s with very simple configurations and very low excess timing jitter (<0. 1 ps). On the other hand, optical gating is due to absorption saturation and the following picosecond absorption recovery in a saturable absorber (SA) in an MLLD structure incorporating optical gate-pulse amplification. Here, MLLDs are anti-reflection coated and used as traveling wave devices instead of laser oscillators, and small saturation energy (<1 pJ) and ultrafast recovery time (<8 ps) are demonstrated. By combining all these MLLD functions, we successfully demonstrated an experiment with 40- to 10-Gbit/s all-optical demultiplexing processing.