The search functionality is under construction.

Keyword Search Result

[Keyword] under-resourced language(2hit)

1-2hit
  • Cross-Lingual Phone Mapping for Large Vocabulary Speech Recognition of Under-Resourced Languages

    Van Hai DO  Xiong XIAO  Eng Siong CHNG  Haizhou LI  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:2
      Page(s):
    285-295

    This paper presents a novel acoustic modeling technique of large vocabulary automatic speech recognition for under-resourced languages by leveraging well-trained acoustic models of other languages (called source languages). The idea is to use source language acoustic model to score the acoustic features of the target language, and then map these scores to the posteriors of the target phones using a classifier. The target phone posteriors are then used for decoding in the usual way of hybrid acoustic modeling. The motivation of such a strategy is that human languages usually share similar phone sets and hence it may be easier to predict the target phone posteriors from the scores generated by source language acoustic models than to train from scratch an under-resourced language acoustic model. The proposed method is evaluated using on the Aurora-4 task with less than 1 hour of training data. Two types of source language acoustic models are considered, i.e. hybrid HMM/MLP and conventional HMM/GMM models. In addition, we also use triphone tied states in the mapping. Our experimental results show that by leveraging well trained Malay and Hungarian acoustic models, we achieved 9.0% word error rate (WER) given 55 minutes of English training data. This is close to the WER of 7.9% obtained by using the full 15 hours of training data and much better than the WER of 14.4% obtained by conventional acoustic modeling techniques with the same 55 minutes of training data.

  • Dependency Parsing with Lattice Structures for Resource-Poor Languages

    Sutee SUDPRASERT  Asanee KAWTRAKUL  Christian BOITET  Vincent BERMENT  

     
    PAPER-Natural Language Processing

      Vol:
    E92-D No:10
      Page(s):
    2122-2136

    In this paper, we present a new dependency parsing method for languages which have very small annotated corpus and for which methods of segmentation and morphological analysis producing a unique (automatically disambiguated) result are very unreliable. Our method works on a morphosyntactic lattice factorizing all possible segmentation and part-of-speech tagging results. The quality of the input to syntactic analysis is hence much better than that of an unreliable unique sequence of lemmatized and tagged words. We propose an adaptation of Eisner's algorithm for finding the k-best dependency trees in a morphosyntactic lattice structure encoding multiple results of morphosyntactic analysis. Moreover, we present how to use Dependency Insertion Grammar in order to adjust the scores and filter out invalid trees, the use of language model to rescore the parse trees and the k-best extension of our parsing model. The highest parsing accuracy reported in this paper is 74.32% which represents a 6.31% improvement compared to the model taking the input from the unreliable morphosyntactic analysis tools.