The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] underwater image(3hit)

1-3hit
  • An Integrated Method to Remove Color Cast and Contrast Enhancement for Underwater Image Open Access

    Siaw-Lang WONG  Raveendran PARAMESRAN  Ibuki YOSHIDA  Akira TAGUCHI  

     
    PAPER-Image

      Vol:
    E102-A No:11
      Page(s):
    1524-1532

    Light scattering and absorption of light in water cause underwater images to be poorly contrasted, haze and dominated by a single color cast. A solution to this is to find methods to improve the quality of the image that eventually leads to better visualization. We propose an integrated approach using Adaptive Gray World (AGW) and Differential Gray-Levels Histogram Equalization for Color Images (DHECI) to remove the color cast as well as improve the contrast and colorfulness of the underwater image. The AGW is an adaptive version of the GW method where apart from computing the global mean, the local mean of each channel of an image is taken into consideration and both are weighted before combining them. It is applied to remove the color cast, thereafter the DHECI is used to improve the contrast and colorfulness of the underwater image. The results of the proposed method are compared with seven state-of-the-art methods using qualitative and quantitative measures. The experimental results showed that in most cases the proposed method produced better quantitative scores than the compared methods.

  • Enhancing Underwater Color Images via Optical Imaging Model and Non-Local Means Denoising

    Dubok PARK  David K. HAN  Hanseok KO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/04/07
      Vol:
    E100-D No:7
      Page(s):
    1475-1483

    This paper proposes a novel framework for enhancing underwater images captured by optical imaging model and non-local means denoising. The proposed approach adjusts the color balance using biasness correction and the average luminance. Scene visibility is then enhanced based on an underwater optical imaging model. The increase in noise in the enhanced images is alleviated by non-local means (NLM) denoising. The final enhanced images are characterized by improved visibility while retaining color fidelity and reducing noise. The proposed method does not require specialized hardware nor prior knowledge of the underwater environment.

  • Turbidity Underwater Image Restoration Using Spectral Properties and Light Compensation

    Huimin LU  Yujie LI  Shota NAKASHIMA  Seiichi SERIKAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/10/20
      Vol:
    E99-D No:1
      Page(s):
    219-227

    Absorption, scattering, and color distortion are three major issues in underwater optical imaging. Light rays traveling through water are scattered and absorbed according to their wavelength. Scattering is caused by large suspended particles that degrade underwater optical images. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient underwater environments are dominated by a bluish tone. In the present paper, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. In addition, we develop a fast weighted guided normalized convolution domain filtering algorithm for enhancing underwater optical images. The enhanced images are characterized by a reduced noise level, better exposure in dark regions, and improved global contrast, by which the finest details and edges are enhanced significantly.