The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] vertical handoff(8hit)

1-8hit
  • Efficient Resource Utilization for Heterogeneous Wireless Personal Area Networks

    Abolfazl MEHBODNIYA  Sonia AÏSSA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1577-1587

    Wireless personal area networks (WPANs) will play an important role in next-generation communication networks. Currently, two technologies are being considered for the physical layer of WPANs, based on the two ultra wideband (UWB) standards, namely, multiband orthogonal frequency division multiplexing (MB-OFDM) UWB and direct-sequence (DS) UWB. The coexistence issue of these two types of WPANs in the same coverage area, raises new issues and introduces new problems which should be dealt with to avoid performance degradation. In particular, efficient radio resource management (RRM) in such environments is challenging. Indeed, the coexistence of heterogenous UWB based WPANs (UPANs) has an ad hoc nature, which requires RRM approaches that are different from traditional infrastructure-based ones. In this paper, we propose new algorithms for two RRM modules in heterogeneous UPANs, namely, radio access technology (RAT) selection and vertical handoff (VHO). To improve the overall performance of the system, our design considers possible narrowband interference (NBI) in the environment as well as the link outage probability, in the decision process. We also provide an analytical model based on a 4D Markov process to study the system in equilibrium and derive the performance metrics, namely, the new-call and handoff-call blocking probabilities, throughput and average carried traffic. Numerical results and comparisons show that our design achieves enhanced performance in terms of throughput and grade of service (GoS).

  • Application of MADM Method VIKOR for Vertical Handoff in Heterogeneous Wireless Networks

    Enrique STEVENS-NAVARRO  Ruben GALLARDO-MEDINA  Ulises PINEDA-RICO  Jesus ACOSTA-ELIAS  

     
    LETTER-Network

      Vol:
    E95-B No:2
      Page(s):
    599-602

    A key technical challenge in heterogeneous wireless networks (HWNs) is the support of vertical handoff. It allows mobile users to switch connections among networks. In this paper, we propose and evaluate the application of VIKOR for vertical handoff. VIKOR is a Multiple Attribute Decision Making (MADM) method which makes decisions based on an aggregating function representing closeness to the ideal solution. We conducted simulation experiments to compare the performance of VIKOR for vertical handoff with other decision schemes such as SAW, TOPSIS, and WMC. We considered voice, data, and cost-constrained connections. Our results show that VIKOR is able to obtain satisfactory to excellent performance in the four different types of connections being considered.

  • Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    Weiwei XIA  Lianfeng SHEN  

     
    PAPER-Network

      Vol:
    E92-B No:6
      Page(s):
    2032-2043

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  • An Enhanced Multihoming Support Scheme with Proxy Mobile IPv6 for Convergent Networks

    Yang LI  Dong-Won KUM  Ju-Eun KANG  You-Ze CHO  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3095-3102

    This paper analyzes the limitations of the multihoming support in the Proxy Mobile IPv6 protocol, then proposes an enhanced multihoming support scheme based on a per-interface address configuration method. The proposed scheme can provide a more flexible multihoming support and also maintain application session continuity during a handoff between two interfaces by using IPv6 extension headers. Plus, flow distribution with filters is also used to realize the advantages of multihoming. Simulation results with the OPNET validate the proposed multihoming support scheme for convergent networks.

  • TCP Context Switching Scheme to Enhance Throughput by Adapting Well to Vertical Handoff in Heterogeneous Wireless Networks

    Woojin SEOK  Sang-Ha KIM  

     
    PAPER-Network

      Vol:
    E91-B No:5
      Page(s):
    1423-1435

    Vertical handoff is a new type of handoff that is triggered when a mobile node moves over heterogeneous wireless networks with each proving different access bandwidth, transmission latency, and coverage. A mobile node can achieve higher throughput by accessing a higher bandwidth providing wireless network. However, TCP has to experience drastic changes of the bandwidth and the latency due to the vertical handoff which must be recognized as a network congestion, and this degrades end-to-end performance. In this paper, we propose a TCP context switching scheme, named Context-Switching TCP, that maintains TCP variables separately for different types of wireless networks. Through simulations, Context-Switching TCP shows higher performance than TCP SACK for vertical handoff. Especially, it shows much higher performance gain when vertical handoff occurs frequently.

  • A Novel Vertical Handoff Scheme Based on Mobility Speed in Integrated WLAN and UMTS Networks

    HyoJin KIM  JooSeok SONG  

     
    LETTER-Network

      Vol:
    E90-B No:7
      Page(s):
    1844-1847

    This letter proposes a vertical handoff scheme for integrated WLAN and UMTS that use the mobile Internet Protocol (IP) to reduce the packet loss caused by the ping-pong effect for high mobility users. The simulation results show that the proposed scheme efficiently increases the throughput of high mobility users.

  • Seamless Video Streaming Technique Supporting Error Concealment for VOD Services in Vertical Handoff

    Jae-Won KIM  Sun-Young JEON  Hye-Soo KIM  Jae-Woong YUN  Sung-Jea KO  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1571-1577

    Vertical handoff is required to achieve anywhere and anytime internet access in the fourth generation (4G) network providing interoperability between universal mobile telecommunications system (UMTS) and wireless LAN (WLAN). However, video data can be lost due to latency caused by vertical handoff. To solve this problem, in this paper, we propose a video streaming technique supporting error concealment (EC) for video on demand (VOD) services that provides seamless playout at the client in vertical handoff. In the proposed method, the streaming server first predicts the client buffer status (CBS). Using the predicted CBS and the channel rate, the streaming server selects a proper video transmission method for vertical handoff between frame selective pre (FSP)-transmission and re-transmission. Performance evaluations are presented to demonstrate the effectiveness of the proposed method.

  • Adaptive Terminal Middleware for Seamless Session Mobility

    Ken OHTA  Takashi YOSHIKAWA  Tomohiro NAKAGAWA  Shoji KURAKAKE  

     
    PAPER

      Vol:
    E86-D No:11
      Page(s):
    2343-2351

    Various network resources, including wireless access services and multimedia appliances (device) are expected to be available in ubiquitous computing environments. Since resource availability can change when a user migrates from one place to another, functions to monitor the availability of resources in use and, if necessary, switch from obsolete resources to new ones are necessary for continuous service provision. This paper proposes adaptive terminal middleware called AMID that performs policy-based dynamic resource selection and host-based session management to ease network administrative tasks, and hide session failures and resource changes from applications and a user. AMID supports two kinds of mobility; session maintenance on vertical handoff and device handoff (service mobility). By AMID, a mobile host keeps entire handoff control and session state to eliminate the need for network-layer or intermediate-node mobility support, and mitigate responsibility of devices for session management. AMID realizes a Reliable Virtual Socket (RVS), on top of real sockets, which employs a seamless session handoff mechanism for resource changes, and a reliable session resume mechanism against unplanned disconnection of a wireless link. It achieves seamless session handoff through a proactive soft handoff method; to conceal setup and signaling latency, it initiates setup procedures with neighbor resources in advance of actual handoff and utilizes multiple wireless interfaces and devices redundantly. We implemented AMID and a follow-me audio application on top of it to evaluate the performance. Redirection of audio streams from built-in speakers to external ones, and handoff between 802.11b and Cellular are autonomously performed when a user migrates in the house. We confirmed that AMID achieved reliable session maintenance against wireless link failure, concealed latency of handoff management, and prevented packet loss during handoff.