The search functionality is under construction.

Keyword Search Result

[Keyword] visual cognition(2hit)

1-2hit
  • Evaluation of EEG Activation Pattern on the Experience of Visual Perception in the Driving

    Keiichiro INAGAKI  Tatsuya MARUNO  Kota YAMAMOTO  

     
    LETTER-Biological Engineering

      Pubricized:
    2020/06/03
      Vol:
    E103-D No:9
      Page(s):
    2032-2034

    The brain processes numerous information related to traffic scenes for appropriate perception, judgment, and operation in vehicle driving. Here, the strategy for perception, judgment, and operation is individually different for each driver, and this difference is thought to be arise from experience of driving. In the present work, we measure and analyze human brain activity (EEG: Electroencephalogram) related to visual perception during vehicle driving to clarify the relationship between experience of driving and brain activity. As a result, more experts generate α activities than beginners, and also confirm that the β activities is reduced than beginners. These results firstly indicate that experience of driving is reflected into the activation pattern of EEG.

  • LILES System: Guiding and Analyzing Cognitive Visualization in Beginning and Intermediate Kanji Learners

    Luis INOSTROZA CUEVA  Masao MUROTA  

     
    PAPER-Educational Technology

      Vol:
    E94-D No:7
      Page(s):
    1449-1458

    This paper provides conceptual and experimental analysis of a new approach in the study of kanji, our “Learner's Visualization (LV) Approach”. In a previous study we found that the LV Approach assists beginning learners in significantly updating their personal kanji deconstruction visualization. Additionally, in another study our findings provided evidence that beginning learners also receive a significant impact in the ability to acquire vocabulary. In this study, our research problem examines how beginning and intermediate students use visualization to cognitively deconstruct (divide) kanji in different ways, and how this affects their learning progress. We analyze the cognitive differences in how kanji learners explore and deconstruct novel kanji while using the LV Approach and how these differences affect their learning process while using the LV Approach. During the learning experience, our LILES System (Learner's Introspective Latent Envisionment System), based on the LV Approach, guides learners to choose from a set of possible “kanji deconstruction layouts” (layouts showing different ways in which a given kanji can be divided). The system then assists learners in updating their “kanji deconstruction level” (the average number of parts they visualize within kanji according to their current abilities). Statistical analysis based on achieved performance was conducted. The analysis of our results proves that there are cognitive differences: beginners deconstruct kanji into more parts (“blocks”) than intermediate learners do, and while both improve their kanji deconstruction scores, there is a more significant change in “kanji deconstruction level” in beginners. However, it was also found that intermediate learners benefit more in “kanji retention score” compared with beginners. Suggestions for further research are provided.