The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] welding(8hit)

1-8hit
  • Random Occurrence of Contact Welding in Electrical Endurance Tests

    Laijun ZHAO  Zhenbiao LI  Hansi ZHANG  Makoto HASEGAWA  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1362-1368

    To clarify how the occurrence of contact welding is related to the series of arc duration characteristics in consecutive make and break operations, electrical endurance tests were conducted on commercially available automotive relays, and the voltage waveforms of make and break arcs between the electrodes were recorded with LabVIEW. Experimental results indicate that welding may occur suddenly or randomly with increasing number of operations. A single arc or a group of make or break arcs with a long arc duration does not necessarily result in contact welding, but a group of longer make or break arcs within a narrow range of operation numbers can cause imminent contact welding (such an effect can be called the “group of longer arcing duration effect”). It is confirmed that contact welding may occur in both make and break operations, but the welding probability during make operations is much higher than that during break operations.

  • Intelligent Controller Implementation for Decreasing Splash in Inverter Spot Welding

    Joon-Ik SON  Young-Do IM  

     
    LETTER-Systems and Control

      Vol:
    E92-A No:7
      Page(s):
    1708-1712

    This study involves implementing an intelligent controller using the fuzzy control algorithm to minimize cold weld and splash in inverter AC spot welding. This study presents an experimental curve of a welding output current and the maximum value of the Instantaneous Heating Rate (IHRmax) using the contact diameter of an electrode as the parameter. It also presents the experimental curve of a welding output current and the slope (S) of the instantaneous dynamic resistance using the instantaneous contact area of an electrode as the parameter. To minimize cold weld and splash, this study proposes an intelligent controller that controls the optimum welding current in real time by estimating the contact diameter of an electrode and the contact area of the initial welding part.

  • Counter-Measures for Relay Failures due to Dynamic Welding: A Robust Engineering Design

    Thomas J. SCHOEPF  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E92-C No:5
      Page(s):
    728-735

    In prior work, contact welding phenomena were observed in automotive relays during break of motor inrush current. The switching performance of the type of relay investigated could be correlated with the parameters: over-travel, coil suppression, and the break current. In the present work the author further explores the impact of both the contact material (silver tin oxide versus fine grain silver) and the contact surface topography (brand new and pre-aged contacts). He further assesses the robustness of the system "relay" with those parameters using the Taguchi methods for robust design. Furthermore, the robustness of two alternative automotive relay types will be discussed.

  • Effect of Arcing Behavior Characteristics on Welding Resistance of Relay Contacts

    Zhenbiao LI  Meifang WEI  Makoto HASEGAWA  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1385-1390

    The dependence of arcing duration and energy in break operations for automotive relays was analysed with breaking current/voltage waveforms. Endurance tests were conducted with AgSnO2, AgNi10 and AgNi0.15 contacts under the loads of resistance, lamp and inductance, respectively, at 14 VDC. The experimental results shows breaking current (or break arc) duration is usually low and stable before welding occurs. The welding may appear suddenly or randomly without any preceding cumulated increases in the arc duration, the quantity of electric charges, nor the arcing energy. The welded contacts may be re-opened in the later break operation and, thereafter, can keep on working normally for many times.

  • Pre-Conditioning Automotive Relay Contacts to Increase Their Resistance to Dynamic Welding

    Thomas J. SCHOEPF  Abdellah BOUDINA  Robert D. ROWLANDS  Brent T. REPP  

     
    PAPER-Relays & Switches

      Vol:
    E90-C No:7
      Page(s):
    1441-1447

    Electromechanical switching devices such as relays may be surprisingly forgiving to occasional, but temporary, electrical stress beyond specification. Consequently delayed openings due to welded contacts on the order of milliseconds usually have been unnoticed and hence have not been reason for concern. However, as electrical systems of vehicles are getting "smarter" and more and more diagnostic routines are being implemented, even such short delay times may be translated as errors. Pre-conditioning contact surfaces has been explored as a measure to increase the welding resistance and eliminate contact opening delays. The 20-A-class relay investigated has been optimized to break occasional current peaks up to 80 ADC.

  • Electrical Contacts for Automotive Applications: A Review

    Zhuan-Ke CHEN  Gerald J. WITTER  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1248-1254

    The three major failures of electrical contacts for automotive relay applications are: contact welding (or contact sticking), high contact resistance and severe contact erosion due to switching arcing. With the demand of high power and multiple functions of automotive vehicles, the switching current has be dramatically increased, it results in higher failing rate, in particular for contact welding. On the other hand, the miniaturization of electromechanical relays has lead to the reduction of mechanical spring force. This not only results in the earlier contact welding but also makes the relay more susceptible to the contact resistance and arc erosion failures. This paper is a review of most recent studies on these three failure aspects. It describes the progress in the understanding of contact welding caused by short arcing and high contact resistance due to contamination of particles and films in relay manufacturing process and also it review the material transfer due to switching arcing. At the end, the brief considerations of electromechanical relays used in 42 volts have also been given.

  • Fault-Tolerant Robust Supervisor for Timed Discrete Event Systems: A Case Study on Spot Welding Processes

    Seong-Jin PARK  Jong-Tae LIM  

     
    LETTER-Theory of Automata, Formal Language Theory

      Vol:
    E83-D No:12
      Page(s):
    2178-2182

    In this paper we develop a robust control theory to achieve fault-tolerant behaviors of timed discrete event systems (DESs) with model uncertainty represented as a set of some possible models. To demonstrate the effectiveness of the proposed theory, we provide a case study of a resistance spot welding process.

  • A Proposal on Contact Surface Model of Electromagnetic Relays Based on the Change in Showering Arc Waveforms with the Number of Contact Operations

    Kiyotomi MIYAJIMA  Shuichi NITTA  Atsuo MUTOH  

     
    PAPER

      Vol:
    E81-C No:3
      Page(s):
    399-407

    The showering arc waveforms generated when contact is being separate have poor reproducibility whose causes are not sufficiently clear. This paper describes that the contact surface conditions which change with the number of contact operations are deeply related to the showering arc waveforms. First, it is experimentally shown that the contacts' surface roughness increases with the number of contact operations, and the growth model of contact surface roughness is proposed based on the change of contact resistance for the number of contact operations. Second, the growth model of molten metal bridge is proposed based on the fact that the showering arc waveforms change with the number of contact operations and the evaluation indexes of showering arc are proposed.