The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] wideband signals(3hit)

1-3hit
  • Low Computational Complexity Direction-of-Arrival Estimation of Wideband Signal Sources Based on Squared TOPS

    Hirotaka HAYASHI  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    219-226

    We propose a new direction-of-arrival (DOA) estimation method of wideband signals. In several decades, many approaches to estimate DOA of wideband signal sources have been proposed. Test of orthogonality of projected subspaces (TOPS) and Squared TOPS are the estimation algorithms to realize high resolution performance of closely spaced signal sources. These methods, however, are not suitable for DOA estimation of multiple signal sources, because the spatial spectrum calculated by Squared TOPS has some false peaks. Therefore, the authors have proposed the weighted squared TOPS (WS-TOPS) to suppress these false peaks by modifying the orthogonality evaluation matrix, WS-TOPS also achieves better DOA estimation accuracy than that of Squared TOPS. On the other hand, WS-TOPS has a drawback, it requires high computational complexity. Our new method can realize good DOA estimation performance, which is better than that of Squared TOPS, with low computational complexity by reducing the size of orthogonality evaluation matrix and the number of subspaces to be used. Simulation results show that the new method can provide high resolution performance and high DOA estimation accuracy with low computational complexity.

  • Autocorrelation Function of Return Waveforms in High Precision Spaceborne Radar Altimeters Employing Chirp Transmit Pulses

    Min-Ho KA  Aleksandr I. BASKAKOV  Anatoliy A. KONONOV  

     
    PAPER-Sensing

      Vol:
    E90-B No:11
      Page(s):
    3237-3245

    This paper analyses the autocorrelation function of return waveforms in high precision radar altimeters employing chirp-pulse transmit signal under the condition of near-nadir deviations of the antenna boresight axis. It is shown that in case of ultra wideband transmit signals providing very high time resolution the correlation function can be approximated by a product of two separate functions of time.

  • Theoretical Analysis on the Performance of Optimal Combining for Multipath Waves Distributed in Spatial and Time Domains

    Takashi INOUE  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E83-B No:7
      Page(s):
    1426-1434

    This paper theoretically analyzed the performance of the RAKE combining (in the time domain), maximal ratio combining (in the spatial domain), and two-dimensional RAKE combining (in the spatial and time domains) techniques for multipath fading environments, where multipath waves are distributed in the spatial and time domains. The analysis was based on a diversity combining technique that employed the eigenvalues of the covariance matrix between branch signals. It was found that the performance of the fading mitigation was normalized by the beamwidth of an array antenna, for various parameters such as the number of antenna elements, angular spread, and angle of arrival.