1-4hit |
Jiangbo LIU Guan GUI Wei XIE Xunchao CONG Qun WAN Fumiyuki ADACHI
Based on the reconstruction of the augmented interference-plus-noise (IPN) covariance matrix (CM) and the estimation of the desired signal's extended steering vector (SV), we propose a novel robust widely linear (WL) beamforming algorithm. Firstly, an extension of the iterative adaptive approach (IAA) algorithm is employed to acquire the spatial spectrum. Secondly, the IAA spatial spectrum is adopted to reconstruct the augmented signal-plus-noise (SPN) CM and the augmented IPNCM. Thirdly, the extended SV of the desired signal is estimated by using the iterative robust Capon beamformer with adaptive uncertainty level (AU-IRCB). Compared with several representative robust WL beamforming algorithms, simulation results are provided to confirm that the proposed method can achieve a better performance and has a much lower complexity.
Shrinkage widely linear recursive least squares (SWL-RLS) and its improved version called structured shrinkage widely linear recursive least squares (SSWL-RLS) algorithms are proposed in this paper. By using the relationship between the noise-free a posterior and a priori error signals, the optimal forgetting factor can be obtained at each snapshot. In the implementation of algorithms, due to the a priori error signal known, we still need the information about the noise-free a priori error which can be estimated with a known formula. Simulation results illustrate that the proposed algorithms have faster convergence and better tracking capability than augmented RLS (A-RLS), augmented least mean square (A-LMS) and SWL-LMS algorithms.
Yuehua DING Yide WANG Nanxi LI Suili FENG Wei FENG
In this paper, an adaptive expansion strategy (AES) is proposed for multiple-input/multiple-output (MIMO) detection in the presence of circular signals. By exploiting channel properties, the AES classifies MIMO channels into three types: excellent, average and deep fading. To avoid unnecessary branch-searching, the AES adopts single expansion (SE), partial expansion (PE) and full expansion (FE) for excellent channels, average channels and deep fading channels, respectively. In the PE, the non-circularity of signal is exploited, and the widely linear processing is extended from non-circular signals to circular signals by I (or Q) component cancellation. An analytical performance analysis is given to quantify the performance improvement. Simulation results show that the proposed algorithm can achieve quasi-optimal performance with much less complexity (hundreds of flops/symbol are saved) compared with the fixed-complexity sphere decoder (FSD) and the sphere decoder (SD).
Jun-Seok LIM Jae-Jin JEON Koeng-Mo SUNG
In this Letter, we propose a new adaptive step-size widely linear constant modulus algorithm (CMA) in DS-CDMA systems especially for time-varying interference environments. The widely linear estimation enables CMA to produce better output signal to interference plus noise ratio (SINR) and the adaptive step-size tackles the time-varying interference environment effectively. The simulations confirm that the proposed algorithm shows better performance in a DS-CDMA system employing a BPSK modulation than other algorithms without use of widely linear processing.