1-3hit |
Yasuhiro KAZAMA Shinobu TOKUMARU
Backfire quadrifilar helical antennas combined with parasitic loops are investigated in detail, focusing on clarifying the function of parasitic loops. First, the basic property is examined for the case of one parasitic loop, and it is found that the loop behaves as a director when the circumferential length of the loop is nearly 0. 9λ, and a reflector when the circumferential length of the loop is nearly 1. 2λ provided the distance between the parasitic loop and the top plane of helical antennas is approximately 0. 1λ, where λ is the wavelength. Next, the function of the parasitic loop is investigated by comparing the current distributions on the helices and the loop with those on a monofilar helix with a ground plane. It is found that the function of the parasitic loop is quite different from that of the ground plane. Then, the case of two parasitic loops is examined, and it is shown that the use of two parasitic loops is very effective and simple measures to control the radiation pattern and gain of the backfire quadrifilar helical antennas. Finally, for this type of antennas with two parasitic loops, an example of structural parameters suited to the use in satellite communications is presented.
A theoretical and experimental study of a thin card-sized antenna is presented. The method of moment with a wire-grid model is used to analyze this antenna. In order to validate numerical efficiency, measurements using Wheeler method are preformed on this antenna and its wire-grid models. The experimental and theoretical results are in good agreement if the wire conductivity is well chosen. And the noise reduction of measured Wheeler efficiency using least mean square method is also examined.
Numerical analysis of the electromagnetic radiation from conducting surface structures is concerned. The method of moments is discussed with the surface-patch modeling in which the surface quantities, i.e. the current, charge and impedance are directly introduced and with the wire-grid modeling in which the surface quantities are approximated by the filamentary traces. The crucial element to a numerical advantage of the wire-grid modeling lies in the simplicity of its mathematical involvements that should be traded for the uncertainties in the construction of the model. The surface-patch techniques are generally not only clear and straightforward but also more reliable than the wire-grid modeling for the computation of the surface quantities. In this work, we bring about a comparative discussion of the two approaches while the analysis of a built-in planar antenna is reported. For the purpose of the comparison, the same electric field integral equation and the Galerkin's procedure with the linear expansion/testing functions are used for both the wire-grid and surface-patch modeling.