1-2hit |
Manabu INUMA Akira OTSUKA Hideki IMAI
The security of biometric authentication systems against impersonation attack is usually evaluated by the false accept rate, FAR. The false accept rate FAR is a metric for zero-effort impersonation attack assuming that the attacker attempts to impersonate a user by presenting his own biometric sample to the system. However, when the attacker has some information about algorithms in the biometric authentication system, he might be able to find a “strange” sample (called a wolf) which shows high similarity to many templates and attempt to impersonate a user by presenting a wolf. Une, Otsuka, Imai [22],[23] formulated such a stronger impersonation attack (called it wolf attack), defined a new security metric (called wolf attack probability, WAP), and showed that WAP is extremely higher than FAR in a fingerprint-minutiae matching algorithm proposed by Ratha et al. [19] and in a finger-vein-patterns matching algorithm proposed by Miura et al. [15]. Previously, we constructed secure matching algorithms based on a feature-dependent threshold approach [8] and showed that if the score distribution is perfectly estimated for each input feature data, then the proposed algorithms can lower WAP to a small value almost the same as FAR. In this paper, in addition to reintroducing the results of our previous work [8], we show that the proposed matching algorithm can keep the false reject rate (FRR) low enough without degrading security, if the score distribution is normal for each feature data.
Masashi UNE Akira OTSUKA Hideki IMAI
This paper will propose a wolf attack probability (WAP) as a new measure for evaluating security of biometric authentication systems. The wolf attack is an attempt to impersonate a victim by feeding "wolves" into the system to be attacked. The "wolf" means an input value which can be falsely accepted as a match with multiple templates. WAP is defined as a maximum success probability of the wolf attack with one wolf sample. In this paper, we give a rigorous definition of the new security measure which gives strength estimation of an individual biometric authentication system against impersonation attacks. We show that if one reestimates using our WAP measure, a typical fingerprint algorithm turns out to be much weaker than theoretically estimated by Ratha et al. Moreover, we apply the wolf attack to a finger-vein-pattern based algorithm. Surprisingly, we show that there exists an extremely strong wolf which falsely matches all templates for any threshold value.