Random unitary beamforming is one of the schemes that can reduce the amount of feedback information in multiuser diversity techniques with multiple-antenna downlink transmission. In Multiple-Input Multiple-Output (MIMO) systems, throughput performance is greatly improved using AMC (Adaptive Modulation and Coding). Throughput performance is also improved by allocating power among streams appropriately. In random unitary beamforming, the transmitter has only partial channel state information (CSI) of each receiver. Thus, it is difficult for random unitary beamforming to use conventional power allocation methods that assumes that all receivers has full CSI. In this paper, we propose a new scheduling algorithm with power allocation for downlink random unitary beamforming that improves throughput performance without full CSI. We provide numerical results of the proposed scheduling algorithm and compare them to those of the conventional random unitary beamforming scheduling algorithm. We show that random unitary beamforming achieves the best system throughput performance with two transmit antennas. We also show that the proposed algorithm attains higher throughput with the small increase of feedback than the random unitary beamforming scheduling algorithm.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yuki TSUCHIYA, Tomoaki OHTSUKI, Toshinobu KANEKO, "Scheduling Algorithm with Power Allocation for Random Unitary Beamforming" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 1, pp. 232-238, January 2008, doi: 10.1093/ietcom/e91-b.1.232.
Abstract: Random unitary beamforming is one of the schemes that can reduce the amount of feedback information in multiuser diversity techniques with multiple-antenna downlink transmission. In Multiple-Input Multiple-Output (MIMO) systems, throughput performance is greatly improved using AMC (Adaptive Modulation and Coding). Throughput performance is also improved by allocating power among streams appropriately. In random unitary beamforming, the transmitter has only partial channel state information (CSI) of each receiver. Thus, it is difficult for random unitary beamforming to use conventional power allocation methods that assumes that all receivers has full CSI. In this paper, we propose a new scheduling algorithm with power allocation for downlink random unitary beamforming that improves throughput performance without full CSI. We provide numerical results of the proposed scheduling algorithm and compare them to those of the conventional random unitary beamforming scheduling algorithm. We show that random unitary beamforming achieves the best system throughput performance with two transmit antennas. We also show that the proposed algorithm attains higher throughput with the small increase of feedback than the random unitary beamforming scheduling algorithm.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.1.232/_p
Copy
@ARTICLE{e91-b_1_232,
author={Yuki TSUCHIYA, Tomoaki OHTSUKI, Toshinobu KANEKO, },
journal={IEICE TRANSACTIONS on Communications},
title={Scheduling Algorithm with Power Allocation for Random Unitary Beamforming},
year={2008},
volume={E91-B},
number={1},
pages={232-238},
abstract={Random unitary beamforming is one of the schemes that can reduce the amount of feedback information in multiuser diversity techniques with multiple-antenna downlink transmission. In Multiple-Input Multiple-Output (MIMO) systems, throughput performance is greatly improved using AMC (Adaptive Modulation and Coding). Throughput performance is also improved by allocating power among streams appropriately. In random unitary beamforming, the transmitter has only partial channel state information (CSI) of each receiver. Thus, it is difficult for random unitary beamforming to use conventional power allocation methods that assumes that all receivers has full CSI. In this paper, we propose a new scheduling algorithm with power allocation for downlink random unitary beamforming that improves throughput performance without full CSI. We provide numerical results of the proposed scheduling algorithm and compare them to those of the conventional random unitary beamforming scheduling algorithm. We show that random unitary beamforming achieves the best system throughput performance with two transmit antennas. We also show that the proposed algorithm attains higher throughput with the small increase of feedback than the random unitary beamforming scheduling algorithm.},
keywords={},
doi={10.1093/ietcom/e91-b.1.232},
ISSN={1745-1345},
month={January},}
Copy
TY - JOUR
TI - Scheduling Algorithm with Power Allocation for Random Unitary Beamforming
T2 - IEICE TRANSACTIONS on Communications
SP - 232
EP - 238
AU - Yuki TSUCHIYA
AU - Tomoaki OHTSUKI
AU - Toshinobu KANEKO
PY - 2008
DO - 10.1093/ietcom/e91-b.1.232
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2008
AB - Random unitary beamforming is one of the schemes that can reduce the amount of feedback information in multiuser diversity techniques with multiple-antenna downlink transmission. In Multiple-Input Multiple-Output (MIMO) systems, throughput performance is greatly improved using AMC (Adaptive Modulation and Coding). Throughput performance is also improved by allocating power among streams appropriately. In random unitary beamforming, the transmitter has only partial channel state information (CSI) of each receiver. Thus, it is difficult for random unitary beamforming to use conventional power allocation methods that assumes that all receivers has full CSI. In this paper, we propose a new scheduling algorithm with power allocation for downlink random unitary beamforming that improves throughput performance without full CSI. We provide numerical results of the proposed scheduling algorithm and compare them to those of the conventional random unitary beamforming scheduling algorithm. We show that random unitary beamforming achieves the best system throughput performance with two transmit antennas. We also show that the proposed algorithm attains higher throughput with the small increase of feedback than the random unitary beamforming scheduling algorithm.
ER -