The search functionality is under construction.
The search functionality is under construction.

Open Access
Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication

Hiroshi IMAMIZU

  • Full Text Views

    80

  • Cite this
  • Free PDF (837.2KB)

Summary :

Humans have a remarkable ability to flexibly control various objects such as tools. Much evidence suggests that the internal models acquired in the central nervous system (CNS) support flexible control. Internal models are neural mechanisms that mimic the input-output properties of controlled objects. In a series of functional magnetic resonance imaging (fMRI) studies, we demonstrate how the CNS acquires and switches internal models for dexterous use of many tools. In the first study, we investigated human cerebellar activity when human subjects learned how to use a novel tool (a rotated computer mouse, where the cursor appears in a rotated position) and found that activity reflecting an internal model of the novel tool increases in the lateral cerebellum after learning how to use the tool. In the second study, we investigated the internal-model activity after sufficient training in the use of two types of novel tools (the rotated mouse and a velocity mouse, where the cursor's velocity is proportional to mouse's position) and found that the cerebellar activities for the two tools were spatially segregated. In the third study, we investigated brain activity associated with the flexible switching of tools. We found that the activity related to switching internal models was in the prefrontal lobe (area 46 and the insula), the parietal lobe, and the cerebellum. These results suggest that internal models in the cerebellum represent input-output properties of the tools as modulators of continuous signals. The cerebellar abilities in adaptive modulation of signals can be used to enhance the control signals in communications between the brain and computers.

Publication
IEICE TRANSACTIONS on Communications Vol.E91-B No.7 pp.2102-2108
Publication Date
2008/07/01
Publicized
Online ISSN
1745-1345
DOI
10.1093/ietcom/e91-b.7.2102
Type of Manuscript
Special Section INVITED PAPER (Special Section on Brain Communication)
Category

Authors

Keyword