Link conditions of a low-earth orbit (LEO) satellite communications system were evaluated, to provide the information necessary for designing a broadband LEO-SAT communications system. The study was made both for optical intersatellite and user/satellite links. For the optical intersatellite link (ISL), we examined several ISL configurations in a circular polar orbit, and found that when the satellites are in the same orbital plane, the link parameters are quite stable, that is, the link between adjacent satellites can be regarded as fixed and, therefore, suitable for broadband transmission via an optical link. However, the link conditions between adjacent orbits change very quickly and over a wide range. To overcome this and extend the network path between satellites in adjacent orbital planes, we proposed intermittent use of the link between satellites in co-rotating adjacent orbital planes at the low latitude region, i.e., only during the period of stable conditions. The optical intersatellite link budget also sets link parameters that are realistic, given present optoelectronic technologies. From quantitative evaluations of the user/satellite link, we believe that both the satellite altitude and minimum elevation angle are critical, both in defining the quality of the service of the LEO-SAT system and in their impact on the other transmission parameters. The link loss, the visible period and the required number of satellites vs. satellite altitude and elevation angle are also indicated. These are important considerations for future system design.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mitsuo NOHARA, Yoshinori ARIMOTO, Wataru CHUJO, Masayuki FUJISE, "A Link Study of a Low-Earth Orbit Satellite Communications System Using Optical Intersatellite Links" in IEICE TRANSACTIONS on Communications,
vol. E76-B, no. 5, pp. 536-543, May 1993, doi: .
Abstract: Link conditions of a low-earth orbit (LEO) satellite communications system were evaluated, to provide the information necessary for designing a broadband LEO-SAT communications system. The study was made both for optical intersatellite and user/satellite links. For the optical intersatellite link (ISL), we examined several ISL configurations in a circular polar orbit, and found that when the satellites are in the same orbital plane, the link parameters are quite stable, that is, the link between adjacent satellites can be regarded as fixed and, therefore, suitable for broadband transmission via an optical link. However, the link conditions between adjacent orbits change very quickly and over a wide range. To overcome this and extend the network path between satellites in adjacent orbital planes, we proposed intermittent use of the link between satellites in co-rotating adjacent orbital planes at the low latitude region, i.e., only during the period of stable conditions. The optical intersatellite link budget also sets link parameters that are realistic, given present optoelectronic technologies. From quantitative evaluations of the user/satellite link, we believe that both the satellite altitude and minimum elevation angle are critical, both in defining the quality of the service of the LEO-SAT system and in their impact on the other transmission parameters. The link loss, the visible period and the required number of satellites vs. satellite altitude and elevation angle are also indicated. These are important considerations for future system design.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e76-b_5_536/_p
Copy
@ARTICLE{e76-b_5_536,
author={Mitsuo NOHARA, Yoshinori ARIMOTO, Wataru CHUJO, Masayuki FUJISE, },
journal={IEICE TRANSACTIONS on Communications},
title={A Link Study of a Low-Earth Orbit Satellite Communications System Using Optical Intersatellite Links},
year={1993},
volume={E76-B},
number={5},
pages={536-543},
abstract={Link conditions of a low-earth orbit (LEO) satellite communications system were evaluated, to provide the information necessary for designing a broadband LEO-SAT communications system. The study was made both for optical intersatellite and user/satellite links. For the optical intersatellite link (ISL), we examined several ISL configurations in a circular polar orbit, and found that when the satellites are in the same orbital plane, the link parameters are quite stable, that is, the link between adjacent satellites can be regarded as fixed and, therefore, suitable for broadband transmission via an optical link. However, the link conditions between adjacent orbits change very quickly and over a wide range. To overcome this and extend the network path between satellites in adjacent orbital planes, we proposed intermittent use of the link between satellites in co-rotating adjacent orbital planes at the low latitude region, i.e., only during the period of stable conditions. The optical intersatellite link budget also sets link parameters that are realistic, given present optoelectronic technologies. From quantitative evaluations of the user/satellite link, we believe that both the satellite altitude and minimum elevation angle are critical, both in defining the quality of the service of the LEO-SAT system and in their impact on the other transmission parameters. The link loss, the visible period and the required number of satellites vs. satellite altitude and elevation angle are also indicated. These are important considerations for future system design.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - A Link Study of a Low-Earth Orbit Satellite Communications System Using Optical Intersatellite Links
T2 - IEICE TRANSACTIONS on Communications
SP - 536
EP - 543
AU - Mitsuo NOHARA
AU - Yoshinori ARIMOTO
AU - Wataru CHUJO
AU - Masayuki FUJISE
PY - 1993
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E76-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 1993
AB - Link conditions of a low-earth orbit (LEO) satellite communications system were evaluated, to provide the information necessary for designing a broadband LEO-SAT communications system. The study was made both for optical intersatellite and user/satellite links. For the optical intersatellite link (ISL), we examined several ISL configurations in a circular polar orbit, and found that when the satellites are in the same orbital plane, the link parameters are quite stable, that is, the link between adjacent satellites can be regarded as fixed and, therefore, suitable for broadband transmission via an optical link. However, the link conditions between adjacent orbits change very quickly and over a wide range. To overcome this and extend the network path between satellites in adjacent orbital planes, we proposed intermittent use of the link between satellites in co-rotating adjacent orbital planes at the low latitude region, i.e., only during the period of stable conditions. The optical intersatellite link budget also sets link parameters that are realistic, given present optoelectronic technologies. From quantitative evaluations of the user/satellite link, we believe that both the satellite altitude and minimum elevation angle are critical, both in defining the quality of the service of the LEO-SAT system and in their impact on the other transmission parameters. The link loss, the visible period and the required number of satellites vs. satellite altitude and elevation angle are also indicated. These are important considerations for future system design.
ER -