The search functionality is under construction.

IEICE TRANSACTIONS on Communications

ATM Superpacket Network for Responsive Mega-Data Delivery Service

Hisaya HADAMA, Takashi SHIMIZU, Masayoshi NABESHIMA, Toshinori TSUBOI

  • Full Text Views

    0

  • Cite this

Summary :

This paper shows new techniques to construct a service network which realizes responsive large-size data transmission for widely distributed mass users. We set our service target as transferring mega-byte scale data from a server to a client within one second. ATM is recognized as a powerful technology with which to construct a wide area network infrastructure that supports multiple bandwidth services. Our fundamental principles in developing such a service network are as follows: a) The bandwidth sharing mechanism should be of the best effort rather than resource reservation type. This is because only best effort schemes remove bandwidth reservation/release overheads. b) More than a 100 Mb/s data transmission rate should be supported throughout data transfer. c) Data transfer should be completed within the round trip through the network (or a small multiple thereof). This is necessary to minimize the effect of transmission time in large-scale networks. d) The user network interface should be simply defined to allow independent evolution of both network and terminal technologies. e) Congestion control must block the spread of congestion within the network. Based on these principles, we propose the "ATM superpacket network (ATM-SN)" as the service network to realize our target service. Key techniques are as follows. (1) Best effort and cut-through transmission of superpackets whose length reaches ten mega-bytes. (2) Network nodes with large-capacity buffer memories that prevent superpacket collisions. (3) Superpacket admission control at network nodes to prevent cell overflow. (4) Superpacket-based congestion control. Our proposal assumes the existence of a high-quality ATM infrastructure that can provide a large bandwidth with a high-quality DBR cell transmission capability (cell loss ratio is less than 10E-7) and small bit error ratios (less than 10E-10). First, we detail our proposal of the ATM-SN. Next, we propose a superpacket-based congestion control technique coupled with a simple Usage Parameter Control function. We then show the evaluation results of those key techniques to confirm the effectiveness of the superpacket network.

Publication
IEICE TRANSACTIONS on Communications Vol.E81-B No.5 pp.1041-1050
Publication Date
1998/05/25
Publicized
Online ISSN
DOI
Type of Manuscript
Category
Communication Networks and Services

Authors

Keyword