The ATM multicast Tree (AMT) is the Mbone of video/audio conferencing and other multicasting applications in ATM (Asynchronous Transfer Mode) networks. However, real problems such as temporarily moving switches, changing optic fiber connections and/or tangible/intangible failures of ATM networks will cause many service disruptions. Thus we must carefully consider the system's SQOS (Survivable QOS) when we construct the system. A point-to-point self-healing scheme utilizing a conventional pre-planned backup mechanism is proposed to protect the AMT from failure. This scheme uses point-to-point pre-planned backup Root-to-Leaf Routes (RLR) as the root-to-leaf structure of an AMT. Though AMT protection via preplanned backup RLR requires no search time, duplicate paths may cause redundant bandwidth consumption. This paper also proposes a closest-node method, which can locate the minimum-length route structure during the initial design and also rebuild the AMT in the event of a network failure. To enhance the survivability of the system, we introduce two near optimal re-routing algorithms, a most-decent search algorithm, and also a predictive-decent search algorithm in order to find the minimum lost flow requirement. These near optimal schemes use search technique to guide the local optimal lost flow to the most-decent lost flow direction. The predictive way is an especially economical technique to reduce the calculation complexity of lost flow function. For the evaluation of the feasibility and performance of the new schemes, we simulate AMT restoration and the simulation results show the closest-node scheme provides superior AMT restoration compared to a system with a preplanned point-to-point backup scheme. In addition, the predictive-decent search algorithm is faster than the most-decent search one.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yih-Fuh WANG, Jen-Fa HUANG, "Preplanned Restoration and Optimal Capacity Placement on ATM Multicast Tree" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 2, pp. 281-292, February 2000, doi: .
Abstract: The ATM multicast Tree (AMT) is the Mbone of video/audio conferencing and other multicasting applications in ATM (Asynchronous Transfer Mode) networks. However, real problems such as temporarily moving switches, changing optic fiber connections and/or tangible/intangible failures of ATM networks will cause many service disruptions. Thus we must carefully consider the system's SQOS (Survivable QOS) when we construct the system. A point-to-point self-healing scheme utilizing a conventional pre-planned backup mechanism is proposed to protect the AMT from failure. This scheme uses point-to-point pre-planned backup Root-to-Leaf Routes (RLR) as the root-to-leaf structure of an AMT. Though AMT protection via preplanned backup RLR requires no search time, duplicate paths may cause redundant bandwidth consumption. This paper also proposes a closest-node method, which can locate the minimum-length route structure during the initial design and also rebuild the AMT in the event of a network failure. To enhance the survivability of the system, we introduce two near optimal re-routing algorithms, a most-decent search algorithm, and also a predictive-decent search algorithm in order to find the minimum lost flow requirement. These near optimal schemes use search technique to guide the local optimal lost flow to the most-decent lost flow direction. The predictive way is an especially economical technique to reduce the calculation complexity of lost flow function. For the evaluation of the feasibility and performance of the new schemes, we simulate AMT restoration and the simulation results show the closest-node scheme provides superior AMT restoration compared to a system with a preplanned point-to-point backup scheme. In addition, the predictive-decent search algorithm is faster than the most-decent search one.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_2_281/_p
Copy
@ARTICLE{e83-b_2_281,
author={Yih-Fuh WANG, Jen-Fa HUANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Preplanned Restoration and Optimal Capacity Placement on ATM Multicast Tree},
year={2000},
volume={E83-B},
number={2},
pages={281-292},
abstract={The ATM multicast Tree (AMT) is the Mbone of video/audio conferencing and other multicasting applications in ATM (Asynchronous Transfer Mode) networks. However, real problems such as temporarily moving switches, changing optic fiber connections and/or tangible/intangible failures of ATM networks will cause many service disruptions. Thus we must carefully consider the system's SQOS (Survivable QOS) when we construct the system. A point-to-point self-healing scheme utilizing a conventional pre-planned backup mechanism is proposed to protect the AMT from failure. This scheme uses point-to-point pre-planned backup Root-to-Leaf Routes (RLR) as the root-to-leaf structure of an AMT. Though AMT protection via preplanned backup RLR requires no search time, duplicate paths may cause redundant bandwidth consumption. This paper also proposes a closest-node method, which can locate the minimum-length route structure during the initial design and also rebuild the AMT in the event of a network failure. To enhance the survivability of the system, we introduce two near optimal re-routing algorithms, a most-decent search algorithm, and also a predictive-decent search algorithm in order to find the minimum lost flow requirement. These near optimal schemes use search technique to guide the local optimal lost flow to the most-decent lost flow direction. The predictive way is an especially economical technique to reduce the calculation complexity of lost flow function. For the evaluation of the feasibility and performance of the new schemes, we simulate AMT restoration and the simulation results show the closest-node scheme provides superior AMT restoration compared to a system with a preplanned point-to-point backup scheme. In addition, the predictive-decent search algorithm is faster than the most-decent search one.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - Preplanned Restoration and Optimal Capacity Placement on ATM Multicast Tree
T2 - IEICE TRANSACTIONS on Communications
SP - 281
EP - 292
AU - Yih-Fuh WANG
AU - Jen-Fa HUANG
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2000
AB - The ATM multicast Tree (AMT) is the Mbone of video/audio conferencing and other multicasting applications in ATM (Asynchronous Transfer Mode) networks. However, real problems such as temporarily moving switches, changing optic fiber connections and/or tangible/intangible failures of ATM networks will cause many service disruptions. Thus we must carefully consider the system's SQOS (Survivable QOS) when we construct the system. A point-to-point self-healing scheme utilizing a conventional pre-planned backup mechanism is proposed to protect the AMT from failure. This scheme uses point-to-point pre-planned backup Root-to-Leaf Routes (RLR) as the root-to-leaf structure of an AMT. Though AMT protection via preplanned backup RLR requires no search time, duplicate paths may cause redundant bandwidth consumption. This paper also proposes a closest-node method, which can locate the minimum-length route structure during the initial design and also rebuild the AMT in the event of a network failure. To enhance the survivability of the system, we introduce two near optimal re-routing algorithms, a most-decent search algorithm, and also a predictive-decent search algorithm in order to find the minimum lost flow requirement. These near optimal schemes use search technique to guide the local optimal lost flow to the most-decent lost flow direction. The predictive way is an especially economical technique to reduce the calculation complexity of lost flow function. For the evaluation of the feasibility and performance of the new schemes, we simulate AMT restoration and the simulation results show the closest-node scheme provides superior AMT restoration compared to a system with a preplanned point-to-point backup scheme. In addition, the predictive-decent search algorithm is faster than the most-decent search one.
ER -