In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yung-Yi WANG, Wen-Hsien FANG, "Wavelet-Based Broadband Beamformers with Dynamic Subband Selection" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 4, pp. 819-826, April 2000, doi: .
Abstract: In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_4_819/_p
Copy
@ARTICLE{e83-b_4_819,
author={Yung-Yi WANG, Wen-Hsien FANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Wavelet-Based Broadband Beamformers with Dynamic Subband Selection},
year={2000},
volume={E83-B},
number={4},
pages={819-826},
abstract={In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Wavelet-Based Broadband Beamformers with Dynamic Subband Selection
T2 - IEICE TRANSACTIONS on Communications
SP - 819
EP - 826
AU - Yung-Yi WANG
AU - Wen-Hsien FANG
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2000
AB - In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.
ER -