The Infostation concept has been proposed to provide convenient and cost effective access to high-speed mobile data services. An efficient IP packet transmission protocol is required to compensate for the high error rate inherent to fading radio channels. In this paper, a novel link layer retransmission scheme is proposed. Using the channel state and fading state estimators, the scheme adjusts the retransmission parameters dynamically in order to achieve the optimum performance under time-varying channel conditions. A theoretical analysis is presented for the case of a random error channel. Furthermore, a simulation tool is developed for evaluating the performance of the scheme in a fading channel with various parameters. The analysis and simulation results show that this new retransmission scheme can provide substantial improvement over traditional schemes. It gives a robust performance in both slow and fast fading conditions. In addition, the algorithm's sensitivity to parameter values and channel characteristics, such as Doppler frequency and fading statistics, is investigated. A unique attribute of this algorithm and performance analysis is that throughput is evaluated in IP packets rather than in physical layer packets.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hua MAO, Gang WU, Michael F. CAGGIANO, James G. EVANS, "An Adaptive Radio Link Protocol for Efficient Packet Transmission in Infostation Systems" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 8, pp. 1800-1809, August 2000, doi: .
Abstract: The Infostation concept has been proposed to provide convenient and cost effective access to high-speed mobile data services. An efficient IP packet transmission protocol is required to compensate for the high error rate inherent to fading radio channels. In this paper, a novel link layer retransmission scheme is proposed. Using the channel state and fading state estimators, the scheme adjusts the retransmission parameters dynamically in order to achieve the optimum performance under time-varying channel conditions. A theoretical analysis is presented for the case of a random error channel. Furthermore, a simulation tool is developed for evaluating the performance of the scheme in a fading channel with various parameters. The analysis and simulation results show that this new retransmission scheme can provide substantial improvement over traditional schemes. It gives a robust performance in both slow and fast fading conditions. In addition, the algorithm's sensitivity to parameter values and channel characteristics, such as Doppler frequency and fading statistics, is investigated. A unique attribute of this algorithm and performance analysis is that throughput is evaluated in IP packets rather than in physical layer packets.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_8_1800/_p
Copy
@ARTICLE{e83-b_8_1800,
author={Hua MAO, Gang WU, Michael F. CAGGIANO, James G. EVANS, },
journal={IEICE TRANSACTIONS on Communications},
title={An Adaptive Radio Link Protocol for Efficient Packet Transmission in Infostation Systems},
year={2000},
volume={E83-B},
number={8},
pages={1800-1809},
abstract={The Infostation concept has been proposed to provide convenient and cost effective access to high-speed mobile data services. An efficient IP packet transmission protocol is required to compensate for the high error rate inherent to fading radio channels. In this paper, a novel link layer retransmission scheme is proposed. Using the channel state and fading state estimators, the scheme adjusts the retransmission parameters dynamically in order to achieve the optimum performance under time-varying channel conditions. A theoretical analysis is presented for the case of a random error channel. Furthermore, a simulation tool is developed for evaluating the performance of the scheme in a fading channel with various parameters. The analysis and simulation results show that this new retransmission scheme can provide substantial improvement over traditional schemes. It gives a robust performance in both slow and fast fading conditions. In addition, the algorithm's sensitivity to parameter values and channel characteristics, such as Doppler frequency and fading statistics, is investigated. A unique attribute of this algorithm and performance analysis is that throughput is evaluated in IP packets rather than in physical layer packets.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - An Adaptive Radio Link Protocol for Efficient Packet Transmission in Infostation Systems
T2 - IEICE TRANSACTIONS on Communications
SP - 1800
EP - 1809
AU - Hua MAO
AU - Gang WU
AU - Michael F. CAGGIANO
AU - James G. EVANS
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2000
AB - The Infostation concept has been proposed to provide convenient and cost effective access to high-speed mobile data services. An efficient IP packet transmission protocol is required to compensate for the high error rate inherent to fading radio channels. In this paper, a novel link layer retransmission scheme is proposed. Using the channel state and fading state estimators, the scheme adjusts the retransmission parameters dynamically in order to achieve the optimum performance under time-varying channel conditions. A theoretical analysis is presented for the case of a random error channel. Furthermore, a simulation tool is developed for evaluating the performance of the scheme in a fading channel with various parameters. The analysis and simulation results show that this new retransmission scheme can provide substantial improvement over traditional schemes. It gives a robust performance in both slow and fast fading conditions. In addition, the algorithm's sensitivity to parameter values and channel characteristics, such as Doppler frequency and fading statistics, is investigated. A unique attribute of this algorithm and performance analysis is that throughput is evaluated in IP packets rather than in physical layer packets.
ER -