In this paper, we propose a Call Admission Control (CAC) scheme for the Direct Sequence-Code Division Multiple Access (DS-CDMA) systems supporting voice and data services and analyze the Erlang capacity under the proposed CAC scheme. Service groups are classified by Quality of Service (QoS) requirements such as the required Bit Error Rate (BER) and information bit rate, and Grade of Service (GoS) requirement such as required call blocking probability. Different traffics require different system resources based on their QoS requirements. In the proposed CAC scheme, some system resources are reserved exclusively for handoff calls to have high priority over new calls. Additionally, the queueing is allowed for both new and handoff data traffics that are not sensitive to delay. As a performance measure of the suggested CAC scheme, Erlang capacity is introduced. For the performance analysis, a four-dimensional Markov chain model is developed. As a numerical example, Erlang capacity of an IS-95B type system is depicted, and optimum values of system parameters such as the number of reservation channels and queue lengths are found. Finally, it is observed that Erlang capacity is improved more than 2 times by properly selecting the system parameters with the proposed CAC scheme. Also, the effect of handoff parameters on the Erlang capacity is observed.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Insoo KOO, Eunchan KIM, Kiseon KIM, "Erlang Capacity of Voice/Data DS-CDMA Systems with Prioritized Services" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 4, pp. 716-726, April 2001, doi: .
Abstract: In this paper, we propose a Call Admission Control (CAC) scheme for the Direct Sequence-Code Division Multiple Access (DS-CDMA) systems supporting voice and data services and analyze the Erlang capacity under the proposed CAC scheme. Service groups are classified by Quality of Service (QoS) requirements such as the required Bit Error Rate (BER) and information bit rate, and Grade of Service (GoS) requirement such as required call blocking probability. Different traffics require different system resources based on their QoS requirements. In the proposed CAC scheme, some system resources are reserved exclusively for handoff calls to have high priority over new calls. Additionally, the queueing is allowed for both new and handoff data traffics that are not sensitive to delay. As a performance measure of the suggested CAC scheme, Erlang capacity is introduced. For the performance analysis, a four-dimensional Markov chain model is developed. As a numerical example, Erlang capacity of an IS-95B type system is depicted, and optimum values of system parameters such as the number of reservation channels and queue lengths are found. Finally, it is observed that Erlang capacity is improved more than 2 times by properly selecting the system parameters with the proposed CAC scheme. Also, the effect of handoff parameters on the Erlang capacity is observed.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_4_716/_p
Copy
@ARTICLE{e84-b_4_716,
author={Insoo KOO, Eunchan KIM, Kiseon KIM, },
journal={IEICE TRANSACTIONS on Communications},
title={Erlang Capacity of Voice/Data DS-CDMA Systems with Prioritized Services},
year={2001},
volume={E84-B},
number={4},
pages={716-726},
abstract={In this paper, we propose a Call Admission Control (CAC) scheme for the Direct Sequence-Code Division Multiple Access (DS-CDMA) systems supporting voice and data services and analyze the Erlang capacity under the proposed CAC scheme. Service groups are classified by Quality of Service (QoS) requirements such as the required Bit Error Rate (BER) and information bit rate, and Grade of Service (GoS) requirement such as required call blocking probability. Different traffics require different system resources based on their QoS requirements. In the proposed CAC scheme, some system resources are reserved exclusively for handoff calls to have high priority over new calls. Additionally, the queueing is allowed for both new and handoff data traffics that are not sensitive to delay. As a performance measure of the suggested CAC scheme, Erlang capacity is introduced. For the performance analysis, a four-dimensional Markov chain model is developed. As a numerical example, Erlang capacity of an IS-95B type system is depicted, and optimum values of system parameters such as the number of reservation channels and queue lengths are found. Finally, it is observed that Erlang capacity is improved more than 2 times by properly selecting the system parameters with the proposed CAC scheme. Also, the effect of handoff parameters on the Erlang capacity is observed.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Erlang Capacity of Voice/Data DS-CDMA Systems with Prioritized Services
T2 - IEICE TRANSACTIONS on Communications
SP - 716
EP - 726
AU - Insoo KOO
AU - Eunchan KIM
AU - Kiseon KIM
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2001
AB - In this paper, we propose a Call Admission Control (CAC) scheme for the Direct Sequence-Code Division Multiple Access (DS-CDMA) systems supporting voice and data services and analyze the Erlang capacity under the proposed CAC scheme. Service groups are classified by Quality of Service (QoS) requirements such as the required Bit Error Rate (BER) and information bit rate, and Grade of Service (GoS) requirement such as required call blocking probability. Different traffics require different system resources based on their QoS requirements. In the proposed CAC scheme, some system resources are reserved exclusively for handoff calls to have high priority over new calls. Additionally, the queueing is allowed for both new and handoff data traffics that are not sensitive to delay. As a performance measure of the suggested CAC scheme, Erlang capacity is introduced. For the performance analysis, a four-dimensional Markov chain model is developed. As a numerical example, Erlang capacity of an IS-95B type system is depicted, and optimum values of system parameters such as the number of reservation channels and queue lengths are found. Finally, it is observed that Erlang capacity is improved more than 2 times by properly selecting the system parameters with the proposed CAC scheme. Also, the effect of handoff parameters on the Erlang capacity is observed.
ER -