In this paper, we propose a new consolidation algorithm called the Selective Backward Resource Management (BRM) cell Feedback (SBF) algorithm. It achieves a fast response and low consolidation noise by selectively forwarding BRM cell from the most congested branch to the source instead of waiting from all branches. Mathematical models are derived to quantitatively characterize the performance, i.e. the response time and ACR of the source, of SBF and previously proposed algorithms. The interoperation of consolidation algorithms in point-to-multipoint available bit rate (ABR) is investigated. We address response time, consolidation noise and the effect of asymmetrical round trip delay (RTD) from branch point to destinations aspects. All combinations of four different consolidation algorithms are interoperated in both local/metropolitan area network (LAN/MAN) and wide area network (WAN) configuration. By a simulation method, we found that the consolidation algorithm used at the uppermost stream branch point, especially in WAN configuration, plays an important role in determining the performance of the network. However, consolidation algorithm used at the lower stream branch point affects the network performance insignificantly. Hence, in order to achieve a good and effective performance of the consolidation algorithms interoperated network, a fast response with low consolidation noise algorithm should be used at the uppermost stream branch point and a simple and easy to implement algorithm should be used at the lower stream branch point.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Naris RANGSINOPPAMAS, Tanun JARUVITAYAKOVIT, Prasit PRAPINMONGKOLKARN, "Interoperation and Analysis of Consolidation Algorithm for Point-to-Multipoint ABR Service in ATM Networks" in IEICE TRANSACTIONS on Communications,
vol. E85-B, no. 5, pp. 987-1001, May 2002, doi: .
Abstract: In this paper, we propose a new consolidation algorithm called the Selective Backward Resource Management (BRM) cell Feedback (SBF) algorithm. It achieves a fast response and low consolidation noise by selectively forwarding BRM cell from the most congested branch to the source instead of waiting from all branches. Mathematical models are derived to quantitatively characterize the performance, i.e. the response time and ACR of the source, of SBF and previously proposed algorithms. The interoperation of consolidation algorithms in point-to-multipoint available bit rate (ABR) is investigated. We address response time, consolidation noise and the effect of asymmetrical round trip delay (RTD) from branch point to destinations aspects. All combinations of four different consolidation algorithms are interoperated in both local/metropolitan area network (LAN/MAN) and wide area network (WAN) configuration. By a simulation method, we found that the consolidation algorithm used at the uppermost stream branch point, especially in WAN configuration, plays an important role in determining the performance of the network. However, consolidation algorithm used at the lower stream branch point affects the network performance insignificantly. Hence, in order to achieve a good and effective performance of the consolidation algorithms interoperated network, a fast response with low consolidation noise algorithm should be used at the uppermost stream branch point and a simple and easy to implement algorithm should be used at the lower stream branch point.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e85-b_5_987/_p
Copy
@ARTICLE{e85-b_5_987,
author={Naris RANGSINOPPAMAS, Tanun JARUVITAYAKOVIT, Prasit PRAPINMONGKOLKARN, },
journal={IEICE TRANSACTIONS on Communications},
title={Interoperation and Analysis of Consolidation Algorithm for Point-to-Multipoint ABR Service in ATM Networks},
year={2002},
volume={E85-B},
number={5},
pages={987-1001},
abstract={In this paper, we propose a new consolidation algorithm called the Selective Backward Resource Management (BRM) cell Feedback (SBF) algorithm. It achieves a fast response and low consolidation noise by selectively forwarding BRM cell from the most congested branch to the source instead of waiting from all branches. Mathematical models are derived to quantitatively characterize the performance, i.e. the response time and ACR of the source, of SBF and previously proposed algorithms. The interoperation of consolidation algorithms in point-to-multipoint available bit rate (ABR) is investigated. We address response time, consolidation noise and the effect of asymmetrical round trip delay (RTD) from branch point to destinations aspects. All combinations of four different consolidation algorithms are interoperated in both local/metropolitan area network (LAN/MAN) and wide area network (WAN) configuration. By a simulation method, we found that the consolidation algorithm used at the uppermost stream branch point, especially in WAN configuration, plays an important role in determining the performance of the network. However, consolidation algorithm used at the lower stream branch point affects the network performance insignificantly. Hence, in order to achieve a good and effective performance of the consolidation algorithms interoperated network, a fast response with low consolidation noise algorithm should be used at the uppermost stream branch point and a simple and easy to implement algorithm should be used at the lower stream branch point.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Interoperation and Analysis of Consolidation Algorithm for Point-to-Multipoint ABR Service in ATM Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 987
EP - 1001
AU - Naris RANGSINOPPAMAS
AU - Tanun JARUVITAYAKOVIT
AU - Prasit PRAPINMONGKOLKARN
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E85-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 2002
AB - In this paper, we propose a new consolidation algorithm called the Selective Backward Resource Management (BRM) cell Feedback (SBF) algorithm. It achieves a fast response and low consolidation noise by selectively forwarding BRM cell from the most congested branch to the source instead of waiting from all branches. Mathematical models are derived to quantitatively characterize the performance, i.e. the response time and ACR of the source, of SBF and previously proposed algorithms. The interoperation of consolidation algorithms in point-to-multipoint available bit rate (ABR) is investigated. We address response time, consolidation noise and the effect of asymmetrical round trip delay (RTD) from branch point to destinations aspects. All combinations of four different consolidation algorithms are interoperated in both local/metropolitan area network (LAN/MAN) and wide area network (WAN) configuration. By a simulation method, we found that the consolidation algorithm used at the uppermost stream branch point, especially in WAN configuration, plays an important role in determining the performance of the network. However, consolidation algorithm used at the lower stream branch point affects the network performance insignificantly. Hence, in order to achieve a good and effective performance of the consolidation algorithms interoperated network, a fast response with low consolidation noise algorithm should be used at the uppermost stream branch point and a simple and easy to implement algorithm should be used at the lower stream branch point.
ER -