In this paper, we consider the all-to-all broadcast problem in optical broadcast star networks using Wavelength Division Multiplexing. Our network model assumes that receivers are fixed-tuned and transmitters are tunable such that optical lasers assigned to transmitters have limited access to the network bandwidth; hence, each node must be equipped with multiple optical lasers and/or multiple optical filters in order to maintain a single-hop network. This paper is primarily concerned with single-hop networks, in which each node is assigned a single optical filter. Lower bounds are first established on the number of lasers per each node and the minimum schedule length, and a schedule achieving the minimum schedule length is presented. The results are applicable to arbitrary tuning delays, arbitrary numbers of wavelength channels, and optical lasers' arbitrary tuning ranges. Network models with optical devices having limited tuning ranges have not yet been considered in connection with transmission schedules, and this is the first work in this new direction.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hongsik CHOI, "All-to-All Broadcast in Broadcast-and-Select WDM Networks with Tunable Devices of Limited Tuning Ranges" in IEICE TRANSACTIONS on Communications,
vol. E86-B, no. 9, pp. 2575-2582, September 2003, doi: .
Abstract: In this paper, we consider the all-to-all broadcast problem in optical broadcast star networks using Wavelength Division Multiplexing. Our network model assumes that receivers are fixed-tuned and transmitters are tunable such that optical lasers assigned to transmitters have limited access to the network bandwidth; hence, each node must be equipped with multiple optical lasers and/or multiple optical filters in order to maintain a single-hop network. This paper is primarily concerned with single-hop networks, in which each node is assigned a single optical filter. Lower bounds are first established on the number of lasers per each node and the minimum schedule length, and a schedule achieving the minimum schedule length is presented. The results are applicable to arbitrary tuning delays, arbitrary numbers of wavelength channels, and optical lasers' arbitrary tuning ranges. Network models with optical devices having limited tuning ranges have not yet been considered in connection with transmission schedules, and this is the first work in this new direction.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e86-b_9_2575/_p
Copy
@ARTICLE{e86-b_9_2575,
author={Hongsik CHOI, },
journal={IEICE TRANSACTIONS on Communications},
title={All-to-All Broadcast in Broadcast-and-Select WDM Networks with Tunable Devices of Limited Tuning Ranges},
year={2003},
volume={E86-B},
number={9},
pages={2575-2582},
abstract={In this paper, we consider the all-to-all broadcast problem in optical broadcast star networks using Wavelength Division Multiplexing. Our network model assumes that receivers are fixed-tuned and transmitters are tunable such that optical lasers assigned to transmitters have limited access to the network bandwidth; hence, each node must be equipped with multiple optical lasers and/or multiple optical filters in order to maintain a single-hop network. This paper is primarily concerned with single-hop networks, in which each node is assigned a single optical filter. Lower bounds are first established on the number of lasers per each node and the minimum schedule length, and a schedule achieving the minimum schedule length is presented. The results are applicable to arbitrary tuning delays, arbitrary numbers of wavelength channels, and optical lasers' arbitrary tuning ranges. Network models with optical devices having limited tuning ranges have not yet been considered in connection with transmission schedules, and this is the first work in this new direction.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - All-to-All Broadcast in Broadcast-and-Select WDM Networks with Tunable Devices of Limited Tuning Ranges
T2 - IEICE TRANSACTIONS on Communications
SP - 2575
EP - 2582
AU - Hongsik CHOI
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E86-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2003
AB - In this paper, we consider the all-to-all broadcast problem in optical broadcast star networks using Wavelength Division Multiplexing. Our network model assumes that receivers are fixed-tuned and transmitters are tunable such that optical lasers assigned to transmitters have limited access to the network bandwidth; hence, each node must be equipped with multiple optical lasers and/or multiple optical filters in order to maintain a single-hop network. This paper is primarily concerned with single-hop networks, in which each node is assigned a single optical filter. Lower bounds are first established on the number of lasers per each node and the minimum schedule length, and a schedule achieving the minimum schedule length is presented. The results are applicable to arbitrary tuning delays, arbitrary numbers of wavelength channels, and optical lasers' arbitrary tuning ranges. Network models with optical devices having limited tuning ranges have not yet been considered in connection with transmission schedules, and this is the first work in this new direction.
ER -