Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Tadashi MINOWA, "Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 8, pp. 2082-2089, August 2004, doi: .
Abstract: Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e87-b_8_2082/_p
Copy
@ARTICLE{e87-b_8_2082,
author={Tadashi MINOWA, },
journal={IEICE TRANSACTIONS on Communications},
title={Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications},
year={2004},
volume={E87-B},
number={8},
pages={2082-2089},
abstract={Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications
T2 - IEICE TRANSACTIONS on Communications
SP - 2082
EP - 2089
AU - Tadashi MINOWA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2004
AB - Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.
ER -