This paper proposes dynamic distributed unicast and multicast routing algorithms for multiple classes of QoS guaranteed networks. Each link in such a network is assumed to be able to provide multiple classes of QoS guarantee by reserving various amounts of resource. A distributed unicast routing algorithm, DCSP (Distributed Constrained Shortest Path), for finding a QoS constrained least cost path between each O-D (Originating-Destination) pair, is proposed first. Two class reduction schemes, the linear and logarithmic policies, are develpoed to prevent exponential growth of the number of end-to-end QoS classes. Based on DCSP, two distributed multicast routing algorithms, DCSPT (Distributed Constrained Shortest Path Tree) and DTM (Distributed Takahashi and Mutsuyama), are proposed to find QoS constrained minimum cost trees. Numerical results indicate that DCSP strongly outperforms previously proposed centralized algorithms and it works better with the linear class reduction method. For the multicast routing algorithms, the DCSPT with linear class reduction method yields the best performance of all multicast routing algorithms.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ren-Hung HWANG, Ben-Jye CHANG, Wen-Cheng HSIAO, Jenq-Muh HSU, "Scalable Distributed Multicast Routing with Multiple Classes of QoS Guarantee" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 9, pp. 2682-2691, September 2004, doi: .
Abstract: This paper proposes dynamic distributed unicast and multicast routing algorithms for multiple classes of QoS guaranteed networks. Each link in such a network is assumed to be able to provide multiple classes of QoS guarantee by reserving various amounts of resource. A distributed unicast routing algorithm, DCSP (Distributed Constrained Shortest Path), for finding a QoS constrained least cost path between each O-D (Originating-Destination) pair, is proposed first. Two class reduction schemes, the linear and logarithmic policies, are develpoed to prevent exponential growth of the number of end-to-end QoS classes. Based on DCSP, two distributed multicast routing algorithms, DCSPT (Distributed Constrained Shortest Path Tree) and DTM (Distributed Takahashi and Mutsuyama), are proposed to find QoS constrained minimum cost trees. Numerical results indicate that DCSP strongly outperforms previously proposed centralized algorithms and it works better with the linear class reduction method. For the multicast routing algorithms, the DCSPT with linear class reduction method yields the best performance of all multicast routing algorithms.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e87-b_9_2682/_p
Copy
@ARTICLE{e87-b_9_2682,
author={Ren-Hung HWANG, Ben-Jye CHANG, Wen-Cheng HSIAO, Jenq-Muh HSU, },
journal={IEICE TRANSACTIONS on Communications},
title={Scalable Distributed Multicast Routing with Multiple Classes of QoS Guarantee},
year={2004},
volume={E87-B},
number={9},
pages={2682-2691},
abstract={This paper proposes dynamic distributed unicast and multicast routing algorithms for multiple classes of QoS guaranteed networks. Each link in such a network is assumed to be able to provide multiple classes of QoS guarantee by reserving various amounts of resource. A distributed unicast routing algorithm, DCSP (Distributed Constrained Shortest Path), for finding a QoS constrained least cost path between each O-D (Originating-Destination) pair, is proposed first. Two class reduction schemes, the linear and logarithmic policies, are develpoed to prevent exponential growth of the number of end-to-end QoS classes. Based on DCSP, two distributed multicast routing algorithms, DCSPT (Distributed Constrained Shortest Path Tree) and DTM (Distributed Takahashi and Mutsuyama), are proposed to find QoS constrained minimum cost trees. Numerical results indicate that DCSP strongly outperforms previously proposed centralized algorithms and it works better with the linear class reduction method. For the multicast routing algorithms, the DCSPT with linear class reduction method yields the best performance of all multicast routing algorithms.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Scalable Distributed Multicast Routing with Multiple Classes of QoS Guarantee
T2 - IEICE TRANSACTIONS on Communications
SP - 2682
EP - 2691
AU - Ren-Hung HWANG
AU - Ben-Jye CHANG
AU - Wen-Cheng HSIAO
AU - Jenq-Muh HSU
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2004
AB - This paper proposes dynamic distributed unicast and multicast routing algorithms for multiple classes of QoS guaranteed networks. Each link in such a network is assumed to be able to provide multiple classes of QoS guarantee by reserving various amounts of resource. A distributed unicast routing algorithm, DCSP (Distributed Constrained Shortest Path), for finding a QoS constrained least cost path between each O-D (Originating-Destination) pair, is proposed first. Two class reduction schemes, the linear and logarithmic policies, are develpoed to prevent exponential growth of the number of end-to-end QoS classes. Based on DCSP, two distributed multicast routing algorithms, DCSPT (Distributed Constrained Shortest Path Tree) and DTM (Distributed Takahashi and Mutsuyama), are proposed to find QoS constrained minimum cost trees. Numerical results indicate that DCSP strongly outperforms previously proposed centralized algorithms and it works better with the linear class reduction method. For the multicast routing algorithms, the DCSPT with linear class reduction method yields the best performance of all multicast routing algorithms.
ER -