Full Text Views
122
In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.
Zhiyuan JIANG
Shanghai University
Yijie HUANG
Shanghai University
Shunqing ZHANG
Shanghai University
Shugong XU
Shanghai University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Zhiyuan JIANG, Yijie HUANG, Shunqing ZHANG, Shugong XU, "Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ" in IEICE TRANSACTIONS on Communications,
vol. E104-B, no. 12, pp. 1465-1478, December 2021, doi: 10.1587/transcom.2021ITI0002.
Abstract: In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2021ITI0002/_p
Copy
@ARTICLE{e104-b_12_1465,
author={Zhiyuan JIANG, Yijie HUANG, Shunqing ZHANG, Shugong XU, },
journal={IEICE TRANSACTIONS on Communications},
title={Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ},
year={2021},
volume={E104-B},
number={12},
pages={1465-1478},
abstract={In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.},
keywords={},
doi={10.1587/transcom.2021ITI0002},
ISSN={1745-1345},
month={December},}
Copy
TY - JOUR
TI - Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ
T2 - IEICE TRANSACTIONS on Communications
SP - 1465
EP - 1478
AU - Zhiyuan JIANG
AU - Yijie HUANG
AU - Shunqing ZHANG
AU - Shugong XU
PY - 2021
DO - 10.1587/transcom.2021ITI0002
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E104-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2021
AB - In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.
ER -